

AWS
All-in-One

Security Guide

Design, Build, Monitor, and Manage a
Fortified Application Ecosystem on AWS

Adrin Mukherjee

www.bpbonline.com

http://www.bpbonline.com/

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-55510-327

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

In loving memory of
Anindya Kanti Roy

- a maverick philosopher, mentor, and techie.

About the Author
Adrin Mukherjee is an experienced solutions architect who has taken up
several challenging roles throughout his career, building distributed
applications and high-performance systems. He enjoys helping customers in
their digital transformation journeys, especially migrating applications to
the cloud and creating highly scalable, secure, and resilient cloud-native
platforms.
He is a certified AWS and Google Cloud solutions architect and security
engineer. His interests include serverless computing, containerization, cloud
security, and machine learning.
When not dabbling at the keyboard, he loves to trek, listens to hard rock,
and enjoys spending time with his family.

LinkedIn: https://www.linkedin.com/in/adrinmukherjee
Blog: https://adrin-mukherjee.medium.com

https://www.linkedin.com/in/adrinmukherjee
https://adrin-mukherjee.medium.com/

About the Reviewer
Javid Ur Rahman is a distinguished database product manager and
enterprise solution architect and has been actively involved in productizing
and promoting cross-ecosystem collaboration in the Cloud Infrastructure,
Edge & Analytics Platform space for over half a decade. He's focused on
research and development of blockchain-based database algorithm designs
and cloud-native-run engine development.
In his current role, he's taken the Enterprise Architect role in Fourth Square
Inc, US Based Product, and Consulting Firm to new geographies.

LinkedIn: https://www.linkedin.com/in/jrahaman7/

https://www.linkedin.com/in/jrahaman7/

Acknowledgement
First and foremost, thanks to my better half, Sakuntala, for giving me the
initial nudge to take up this project and putting up with me while I was
engrossed in writing this book over many weekends- I could not have
finished this without her continuous support.
I am eternally grateful to my mother, who has been a pillar of strength and
the one I have always turned for comfort during difficult times.
To my son Arik, who happens to be the source of my laughter and immense
joy- I can’t imagine a life without his childish pranks and exhibitions of
newly acquired antics.
To Choco, my best friend and canine companion, who was equally
enthusiastic and ignorant of my work- Thanks for keeping me company
during the writing of this book, even in the ungodly hours.
My heartfelt gratitude towards my colleagues and friends who believed in
me and have shown interest in my work. Special thanks to Binson Paul,
Ratnadeep Bardhan Roy, Angshuman Mukherjee, Arijit Mazumdar and
Animesh Das.
Finally, sincere thanks to the team at BPB Publications for providing me
with this exciting opportunity of writing my first book for them.

Preface
With enterprises moving their workloads and assets to public clouds,
securing application ecosystems and resources on multi-tenanted public
cloud providers like Amazon Web Services (AWS) is a primary concern. In
AWS, security is considered “job-zero” as such, the customers can leverage
AWS’s highly secure global infrastructure and various infrastructure and
abstract services. However, in the public cloud, the customers also have
their share of responsibility towards securing applications and workloads.
The goal of this book is to provide in-depth information on various
security-focused AWS services and features that can be leveraged to design
and implement a fortified application ecosystem on AWS. The book takes a
layered approach to security which introduces multiple security controls
across the cloud environment. Each layer has to be secured independently
with a chosen set of security controls and guardrails. This ensures that a gap
or flaw in one layer can be countered by controls and measures in another
layer. This book dedicates individual chapters to each such layer and
introduces specific security measures and AWS services that can help to
establish the necessary security fences.
In the course of seven chapters, the readers will learn the following:
Chapter 1 introduces the shared responsibility model of security on AWS
and various service offerings that can help secure applications and
workloads on AWS.
Chapter 2 discusses the fundamental service in AWS- Identity and Access
Management (IAM). The chapter shows how to create IAM policies to
secure AWS resources with the help of multiple examples. It also introduces
the commonly used access management strategies like delegation and
federation. Finally, the chapter explains various AWS tools available for
easy creation, management, and governance of access policies.
Chapter 3 moves through the various AWS features, services, and
strategies available to secure cloud infrastructure. These include security of
Virtual Private Cloud, patch management for EC2 instances, privileged
session management, etc. The chapter also covers Distributed Denial of

Service (DDoS) attacks, mitigation steps and introduces AWS Shield- a
managed service that can help fight such attacks.
Chapter 4 is related to the security of data in the AWS cloud. The chapter
introduces AWS Key Management Service (KMS) and AWS CloudHSM,
which are at the core of data protection on AWS. It also visits the data
security features of popular services like S3, EBS, DynamoDB, and RDS.
Lastly, it introduces Amazon Macie, a fully managed service for data loss
prevention.
Chapter 5 focuses on how AWS can help in securing the application layer.
The chapter takes a deeper look into securing APIs deployed on AWS API
Gateway, leveraging Amazon Cognito to design authentication and
authorization schemes, securing web applications hosted on Amazon S3
and Amazon CloudFront, etc. The chapter emphasizes using AWS Secrets
Manager and AWS Systems Manager- Parameter Store services to
externalize various application-level secrets and configuration parameters.
It also takes a closer look at using AWS Web Application Firewall (WAF)
to safeguard applications from Layer-7 attacks and how appropriate use of
Elastic Load Balancers (ELBs) can go a long way in securing applications
deployed on AWS.
Chapter 6 focuses on essential logging, monitoring, and auditing services
like Amazon CloudWatch, AWS CloudTrail, AWS Config, etc. The chapter
briefly introduces advanced monitoring services like Amazon GuardDuty,
AWS Security Hub, Amazon Detective, etc.
Chapter 7 is all about security best practices recommended to be followed
in the AWS cloud to improve the security posture of the application
ecosystem. The best practices have been grouped into the following layers-
IAM, infrastructure, data, application, logging, and monitoring.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/db7792
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/AWS-All-in-One-Security-Guide. In
case there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/db7792
https://github.com/bpbpublications/AWS-All-in-One-Security-Guide
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Introduction to Security in AWS

Introduction
Structure
Objectives
Shared responsibility model

Security of the cloud – AWS responsibility
Security in the cloud – customer responsibility
Controls in shared responsibility model

Inherited controls
Shared controls
Fully controlled by the customer

Important AWS security service offerings
AWS Identity and Access Management (IAM)
Amazon Virtual Private Cloud (VPC)
VPC Flow Logs
Amazon CloudWatch
AWS CloudTrail
AWS Config
Amazon Inspector
Amazon GuardDuty
AWS Shield
AWS WAF
Amazon Macie
AWS Security Hub
AWS Key Management Service (KMS)
AWS Secrets Manager
AWS Systems Manager
AWS Artifact

Security guidance
AWS Trusted Advisor
AWS Account Teams
AWS Enterprise Support
AWS Partner Network

AWS Professional Services
AWS Marketplace
AWS Security Bulletins
AWS Security Documentation
AWS Well-Architected Framework
AWS Well-architected Tool

Quick Note on AWS Management Console
Conclusion

2. Identity and Access Management
Introduction
Structure
Objectives
Fundamentals of IAM
Identity

IAM user
AWS account root user
User creation and credential management
Password policy

IAM group
IAM role
A quick introduction to AWS-CLI

Access Management
IAM Policy

Structure of a policy
IAM policy examples

AWS Organizations
Service control policy

Identity-based policy
Permission boundaries

Resource-based policy
S3 Bucket Policy
Trust policy
Resource based policy versus IAM role

Session policy
Evaluation of policies

Identity based policies and resource-based policies

Identity based policies and permission boundary
Identity based policies and service control policies (SCP)

Delegation
Cross account role
Cross account role with third-party accounts

Federation
SAML2.0 based federation
Web Identity Federation
Web Identity Federation with Cognito
AWS Directory Service
AWS Single Sign On (SSO)

Amazon S3 ACL
Amazon S3 Canned ACLs

AWS tools for IAM
Visual editor for policies
Access advisor
Access analyzer

Conclusion

3. Infrastructure Security
Introduction
Structure
Objectives
AWS Global Infrastructure
Securing networks with Virtual Private Cloud

Hybrid networks
VPN connectivity
AWS Direct Connect

A quick note on VPC based AWS CLI commands
Inter VPC private communication

VPC peering
Transit gateway

Private communication with AWS services
Gateway endpoints
Interface endpoints
A note on AWS PrivateLink

NAT devices and egress-only Internet gateways

NAT gateways
NAT instance
Egress-only Internet gateways

Firewalls
Security groups
Network Access Control Lists
DNS Firewall
AWS Network Firewall
A note on AWS Firewall Manager

Traffic mirroring
Patch management
Secure SSH and RDP session management
IP filtering

AWS WAF Rule based on IP set
Blacklisting with resource policy
Blacklisting with NACL
Whitelisting with security groups

Vulnerability assessment
Amazon Inspector
ECR image scans

Distributed Denial of Service and AWS Shield
A note on Distributed Denial of Service
DDoS Mitigation
AWS Shield

AWS Shield Standard
AWS Shield Advanced
Global threat dashboard

Conclusion

4. Data Security
Introduction
Structure
Objectives
Fundamental concepts of securing data

Fundamentals of cryptography
Symmetric and asymmetric algorithms
Digital signature and message security

Security of data in motion and at rest
AWS Key Management Service (KMS)

Customer Master Key (CMK)
Key material origin
Encryption and decryption with CMK

Data key and data key pairs
Envelope encryption

Encryption and decryption with data key
More KMS features

Authenticated encryption with encryption context
KMS grant
Key rotation

AWS CloudHSM
Amazon S3

Server-side encryption
Client-side encryption

Amazon EBS
Amazon DynamoDB

Server-side encryption
Client-side encryption

Amazon RDS
Server-side encryption
Client-side encryption
Establishing encrypted database connection

Amazon Macie for data loss prevention
Sensitive data discovery job

Conclusion

5. Application Security
Introduction
Structure
Objectives
Securing APIs

API authorization
IAM Authorizer
Lambda Authorizer
Cognito Authorizer

JWT Authorizer
Controlling Cross Origin Requests
Mutual TLS and client certificates

Mutual TLS
Client certificate

Usage plan, API keys, throttling, and quota
Protecting APIs with WAF
Private APIs

AuthN/AuthZ with Amazon Cognito
User Pool

Authentication
Authorization

Identity Pool
Authentication
Authorization

Granular authorization with user pool and identity pool
A quick introduction to AWS Amplify

Securing web applications hosted on Amazon S3 and CloudFront
Securing S3 access with Origin Access Identity
Securing S3 Website access with Referrer Header
Configure additional Security Headers
Configure Geo Restrictions

Externalizing the secrets and configuration parameters
AWS Secrets Manager

Anatomy of a Secret
Creation and Retrieval of Secrets
Rotation of Secrets
Access Control for Secrets

AWS Systems Manager Parameter Store
Creation and retrieval of parameters

Comparison: AWS Secrets Manager v/s AWS SSM Parameter Store
Web Application Firewall
Securing applications with load balancer

WAF rules for Application Load Balancer
Elastic Load Balancing and TLS

TLS termination
End-to-end TLS

Conclusion

6. Logging, Monitoring, and Auditing
Introduction
Structure
Objectives
Amazon CloudWatch

CloudWatch Logs
Unified CloudWatch agent
Logs Insights
Subscriptions for real-time processing of logged data
Export logs to Amazon S3

CloudWatch metrics and alarms
CloudWatch events
Amazon EventBridge

AWS CloudTrail
AWS CloudTrail Events
Creation of a Trail
Trail configuration

Encryption support for log files
Log file integrity
Notification for log file delivery
Event selectors and advanced event selectors
Monitoring a trail

Important logs managed by AWS
AWS config

Delivery of configuration items
Config rules
Aggregator

Amazon GuardDuty
AWS Security Hub
Amazon Detective
AWS Artifact
AWS Service Catalog
Conclusion

7. Security Best Practices

Introduction
Structure
Objectives
Shared responsibility model
IAM best practices

Safeguarding the account root user
Creating and managing IAM users/groups
Following the principle of least privilege
Using AWS managed and custom policies
Using temporary credentials
Some more IAM best practices

Infrastructure security best practices
Data security best practices
Application security best practices
Logging and monitoring best practices
Conclusion

Index

CHAPTER 1
Introduction to Security in AWS

Introduction
As the enterprises and businesses move their workloads into the public
cloud, security has become the most talked about subject in cloud migration
and cloud adoption journeys. Design for security is pervasive throughout
the Amazon's infrastructure and is built into every service offered by
Amazon Web Services (AWS). However, security on the public cloud is
different in many respects from security on-premises, and thus, it must be
seen from different angles. As such, there is a shared responsibility model
of security on the AWS cloud. While AWS is responsible for the "Security
of the cloud", the customers are responsible for the "Security in the cloud."

Structure
In this chapter, we will cover the following topics:

Shared responsibility model
Important AWS security service offerings
Security guidance offered by AWS
Quick note on AWS Management Console

Objectives
In this chapter, we will gather the basic understanding of the security in the
AWS cloud, which primarily revolves around the concept of the shared
responsibility model. We will also identify some of the critical AWS
security service offerings. We will cover some security guidance tools,
documentation, and other resources that are provided by AWS and AWS
Partner Network (APN) partners. These can help us create highly secure
and resilient workloads and applications hosted on the AWS cloud.

Shared responsibility model
Security of the workloads and applications on the AWS cloud is a shared
responsibility. This responsibility is shared between AWS and the customer.
AWS is responsible for securing the global infrastructure and hardware that
supports the cloud. The customer, on the other hand, is responsible for
anything that they put on the cloud. This model can essentially improve the
security posture of the customer and increase operational efficiency. The
key goal is to create highly secure and resilient applications and workloads
on the AWS cloud. Figure 1.1 explains the responsibilities shared by AWS
and customers as follows:

Figure 1.1: Shared responsibility in AWS cloud

In the subsequent sections, we will dive deeper into understanding the
responsibilities pertaining to each player.

Security of the cloud – AWS responsibility
AWS is responsible for protecting the global infrastructure that runs all the
services offered in the AWS Cloud. This infrastructure is composed of
hardware, software, networking, and facilities/data centers that run the
AWS Cloud services. Securing this infrastructure is AWS's utmost priority,
and as such, the infrastructure undergoes regular audits to meet the required
security and compliance standards. These audit reports are made available

to the AWS customers digitally. AWS is also responsible for the security of
the basic essential infrastructure services like compute, storage, networking,
and database (managed database services like Amazon RDS or Amazon
DynamoDB, etc.).
The figure 1.2 provides an overview of AWS's slice pertaining to the shared
responsibility model as follows:

Figure 1.2: Security of the cloud

For pure infrastructure services like Amazon EC2, Amazon EBS, Amazon
VPC, etc., AWS is responsible for the security of the underlying global
infrastructure and the other infrastructure-related services, including the
hypervisor layer (wherever applicable).
For the managed or abstracted services like Amazon RDS, Amazon
DynamoDB, Amazon S3, in addition to the security of the infrastructure
and related infrastructure services, AWS also handles the fundamental
security tasks like guest OS patching, database patching, firewall
configurations, and disaster recovery.

Security in the cloud – customer responsibility
Customer responsibility is determined by the AWS Cloud services that a
customer uses. The AWS services that fall clearly into the category of
Infrastructure-as-a-Service (IaaS) – such as Amazon EC2, Amazon VPC,
etc. – are entirely under the customer's control, and the customers are
expected to perform all of the necessary security configuration and
management tasks. For example, for Amazon EC2 instances, the customer

is responsible for the guest OS updates and patches, any application
software or utilities installed on these instances, and the configuration of
AWS firewall (called security groups) on each instance.
In the case of managed or abstracted services like Amazon S3, Amazon
DynamoDB, or Amazon RDS, the customer is relieved of the burden of
launching and maintaining the underlying instances, patching the guest OS
or database, etc. AWS handles the infrastructure layer, operating system,
and the platforms on behalf of the customer. However, the customer still
needs to access the service endpoints to store and retrieve the data, setup
necessary permissions, and access control policies, etc. The customer also
needs to decide on the classification of the data and security of the data at
rest and in motion and apply the appropriate encryption options. Auditing
and tracking of the API/user activity need to be performed by the customer.
The figure 1.3 gives the basic set of responsibilities that needs to be
managed by the customers who have deployed their applications and
workloads on the AWS cloud as follows:

Figure 1.3: Security in the cloud

Controls in shared responsibility model
In this section, we will look into "who is responsible for what" in the
context of Shared Responsibility Model and IT controls in the AWS cloud.
The IT controls can be differentiated into the following three categories:

Inherited controls
These controls are inherited by the customers from AWS. Some examples
are as follows:

Physical and environmental controls: This includes the physical
access to the AWS facilities and involves various strict and controlled
access to the facilities, professional security staff at ingress points,
video surveillance, intrusion detection systems, multi-factor
authentication, decommissioning physical storage devices, etc. The
environmental controls like fire detection and suppression, power,
climate, and temperature controls also fall under this category.
Controls For Business Continuity Management: The AWS data
centers are always built in clusters in various geographical regions to
offer greater availability. The core applications are load-balanced and
deployed in the N+1 configurations, so that the architecture can handle
the data center failures. Availability Zones (AZs) are engineered to be
physically separated within a metropolitan region and are located in
the lower-risk flood plains. To reduce the single point of failure, in
addition to the uninterruptable power supply (UPS) and the on-site
backup generation facilities, AZs are also fed via different power grids
from the independent sources.
Network Security Controls: AWS has state-of-the-art, high
bandwidth, fault-tolerant network infrastructure that is strictly
monitored and managed. The boundary devices and other network
devices manage the rulesets and traffic flow policies that are approved
by Amazon Information Security. AWS has a limited number of access
points to the cloud placed strategically that offer comprehensive
ingress and egress traffic monitoring. These are called API endpoints,
and they allow the HTTPS traffic only.

Shared controls
These controls apply to both the infrastructure and the customer layers.
Here, AWS provides the requirements specific to the infrastructure, and the
customers provide their own implementation of the controls within the
context of their use of the AWS services. Some common examples are as
follows:

Patch management: AWS is responsible for patching and fixing the
issues within the infrastructure, including network, hypervisor, host
OS, etc. The customers are responsible for patching their guest OS and
applications hosted on top of the infrastructure. AWS does provide
services like AWS Systems Manager-Patch Manager that can be used
by the customers to facilitate the patching process.
Configuration management: AWS maintains and manages the
configuration of its infrastructure devices, and the customers are
responsible for configuring their own guest OS, databases, and
applications.
Awareness and training: While AWS train the AWS employees with
the knowledge about the security controls in place, the customers are
responsible for training and educating the internal cloud employees.

Fully controlled by the customer
These controls are solely the responsibility of the customers, based on the
nature of the workload or the application deployed within the AWS
services. Here’s an example:

Service and communications protection/zone security: The
customers may require routing or zoning the data within the specific
security environments.

Important AWS security service offerings
AWS has a plethora of related security services which can help the
customer to create a highly secured platform or application on the AWS
cloud. The following section provides with the introductory notes on some
of the essential and vital services that can be leveraged.

AWS Identity and Access Management (IAM)
AWS Identity and Access Management (IAM) enables the customers to
control and manage the access to the AWS services and resources securely.
AWS IAM can be leveraged to create the human identities and/or machine
identities and provide the fine-grained permission and access control to
these identities. It supports the complex conditions to control the access,

like originating IP address, whether SSL is used, or whether the user has
been authenticated with Multi-Factor Authentication (MFA) device, etc.
AWS IAM also helps to integrate the users with the existing corporate
identity providers, like Microsoft Active Directory, or with the web identity
providers, like Google, Facebook, etc., through Identity Federation.

Amazon Virtual Private Cloud (VPC)
Amazon Virtual Private Cloud, or VPC for short, is a foundational regional
service that allows us to launch or instantiate the AWS resources in a
logically isolated virtual network that we define. A VPC is a software-
defined network (SDN) optimized for moving massive amounts of
network packets from the source to the destination. It gives us complete
control over the virtual networking environment which includes, selection
of the IP ranges (or classless inter-domain routing/CIDR ranges), creation
of the subnets, configuration of the route tables, network gateways (like
Internet Gateways), etc. Support for both the IPv4 and the IPv6 is available
for most resources in the VPC. Amazon VPC supports multiple layers of
security that includes security groups and Network Access Control Lists
(NACLs). In essence, VPC is our own chunk of AWS cloud that creates a
network fabric, abstracting the inherent complexities of the routers,
switches, and other networking devices.

VPC Flow Logs
VPC Flow Logs is a feature that enables us to capture information about the
IP traffic going to and from the network interfaces in the VPC. Flow log
data can be published to the Amazon CloudWatch Logs or Amazon S3.
VPC Flow Logs can be enabled at the VPC level, subnet level, or network
interface level.

Amazon CloudWatch
Amazon CloudWatch is the primary logging and monitoring service
available in the AWS service arsenal. CloudWatch collects the monitoring
and operational data from the AWS resources, applications, and services in
the form of logs, metrics, and events, thereby providing a unified view with
actionable insights.

AWS CloudTrail
AWS CloudTrail helps with the governance, compliance, and
operational/risk auditing of the AWS accounts. Actions taken by a user,
role, or an AWS service are recorded as events in CloudTrail. The events
include actions taken in the AWS Management Console, AWS Command
Line Interface, and AWS SDKs and APIs. This event history helps in the
compliance auditing, operational analysis, security analysis, resource
change tracking, and other troubleshooting.

AWS Config
AWS Config is a regional service that helps us to continuously keep track
of the configuration changes made to the AWS resources. We can evaluate
and audit the recorded configurations against the desired state of the
resources, thereby simplifying the compliance auditing, security/forensic
analysis, change management, operational troubleshooting, and enterprise-
wide compliance monitoring. As part of the tracking, AWS Config sends
the updated configuration details to a specified Amazon S3 bucket. For
each resource type that AWS Config records, it sends a configuration
history file (in JSON format) every six hours. Each configuration history
file contains the details about the resources that changed in that period of
six hours. AWS Config can also deliver the configuration snapshots to an
Amazon S3 bucket, on demand. AWS Config can also be configured to
send the configuration change notifications to a specified Amazon Simple
Notification Service (SNS) topic. AWS Config supports several resource
types.

Amazon Inspector
Amazon Inspector is an automated security assessment service. It can
perform the assessments based on the pre-defined templates and produce a
detailed list of security findings that are prioritized by severity. Amazon
Inspector primarily supports two types of assessments – host assessment
and network assessment. For the host assessment, an agent, also known as
inspector agent, is required to be installed in the EC2 instances (also known
as assessment targets). However, for the network assessment, an inspector

agent is optional. The following pre-defined assessment templates are
supported:

Common Vulnerabilities and Exposures (CVE)
CIS Operating System Security Configuration Benchmarks
Network Reachability
Security Best Practices

Amazon GuardDuty
Amazon GuardDuty is an intelligent threat detection service that can
continuously monitor for malicious activity and unauthorized behavior to
protect the AWS accounts and workloads. The service uses machine
learning, anomaly detection, and integrated threat intelligence to identify
the potential threats. GuardDuty can detect activities like crypto-currency
mining, credential compromise behavior, unauthorized and unusual data
access, API calls from known malicious IPs, etc. GuardDuty actively
monitors the following three types of resources and can generate
comprehensive findings along with severities:

CloudTrail events
VPC Flow Logs
Route53 DNS Logs

AWS Shield
AWS Shield is a managed service for protection against the Open Systems
Interconnection (OSI) layers 3 & 4 and Distributed Denial of Service
(DDoS) attacks. AWS Shield provides the always-on detection and
automatic inline mitigation that essentially minimize the application
downtime and latency due to the DDoS attacks. There are two tiers of AWS
Shield service, which are as follows:

The standard tier provides protection against the most common
network and transport layer DDoS attacks.
The advanced tier protects against the large and sophisticated DDoS
attacks with near real-time visibility. It also provides 24x7 access to

AWS DDoS Response Team (DRT) and cost protection. The cost
protection is provided by AWS in terms of credits to services like
Amazon Route53, Elastic Load Balancer (ELB), Amazon
CloudFront, etc.

AWS WAF
AWS WAF is a web application firewall that helps protect the web
applications and/or APIs against the common OSI layer-7 attacks like SQL
injection, Cross-Site Scripting (XSS), etc., by filtering out the malicious
traffic patterns using managed rules. These managed rules can be used to
address well-known issues like Open Web Application Security Project
(OWASP) Top 10 security risks. AWS WAF can be deployed on the
following AWS services:

Amazon CloudFront
Application Load Balancer
Amazon API Gateway (to protect RESTful APIs)
AWS AppSync (to protect GraphQL APIs)

Amazon Macie
Amazon Macie is a fully managed, Machine Learning powered, sensitive
data discovery and classification service that helps to implement the Data
Loss Prevention (DLP) solutions. It can continuously evaluate the Amazon
S3 environment, which includes buckets, bucket contents, and relevant
access controls, and can automatically discover and classify sensitive data
like personally identifiable information (PII). It can additionally generate
findings that could be sent to CloudWatch Events for further action and
remediation.

AWS Security Hub
AWS Security Hub is a regional service that provides a comprehensive and
aggregated view of the high-priority security alerts and compliance status
across multiple AWS accounts, thus, providing a single source of truth for
the security audits. AWS Security Hub can aggregate, organize, and

prioritize the security findings from multiple AWS Services. The following
services are supported out-of-the-box:

Amazon GuardDuty
Amazon Macie
Amazon Inspector
AWS Systems Manager
AWS Firewall Manager
AWS IAM Access Analyzer

AWS Security Hub also provides integrations with other third-party security
solution providers like AlertLogic, Twistlock, Symantec, Barracuda, etc.
AWS Security Hub can significantly improve the security posture with
aggregated findings and automated checks.

AWS Key Management Service (KMS)
AWS Key Management Service (KMS) is a fully managed service that
helps to create and manage the cryptographic keys. AWS KMS is highly
secure and resilient, and leverages hardware security modules (HSM) to
protect the keys. It provides centralized key management and helps to
define the consistent policies around the ownership and access of the keys.

AWS Secrets Manager
AWS Secrets Manager is a fully managed service that can securely store
and manage the lifecycle of the secrets like database credentials, API-keys,
security tokens, etc. AWS Secrets Manager supports the versioning of these
sensitive pieces of information and could be used for rotating these secrets
as well. Essentially, AWS Secrets Manager can help the application
developers to eliminate the need to hardcode sensitive information in the
code or configuration files.

AWS Systems Manager
AWS Systems Manager is a suite of services that gives better visibility and
control over our infrastructure on AWS. It supports the grouping of

resources like Amazon EC2 instances, Amazon S3 buckets, Amazon RDS
instances, etc., by application. Some of the crucial services under AWS
Systems Manager are as follows:

Parameter Store is a centralized store to manage the application
configuration data. It can also act as a cost-effective alternative to
AWS Secrets Manager for storing the secrets in the form of
SecureString, provided automatic rotation requirements are not being
considered for such secrets.
Sessions Manager helps to start a session on the EC2 instance with an
SSM agent installed and get access into the instance from the browser-
based shell (and execute shell commands) or through AWS CLI
without having to explicitly open any inbound SSH port (22) or setup
any VPN.
Patch Manager automates the process of patching managed
instances. It can be used to scan for missing patches using the Patch
baseline service.

AWS Artifact
AWS Artifact is the central resource for compliance-related information on
AWS. It gives on-demand access to AWS security and compliance audit
reports like Payment Card Industry (PCI) reports, Service Organization
Control (SOC) reports, etc.

Security Guidance
AWS provides the customers with guidance and expertise through online
tools, resources, support, and professional services provided by AWS and
its partners. This guidance helps the customer to create and deploy the
applications and manage the workloads following the AWS security best
practices. Here is a list of some of the commonly used security guidance
tools and resources.

AWS Trusted Advisor
AWS Trusted Advisor is an online tool that provides real-time guidance and
helps us in provisioning the AWS resources following the AWS best

practices. AWS Trusted Advisor analyzes the AWS environment and
provides recommendations that fall under the following five distinct
categories:

Security
Cost optimization
Performance
Fault tolerance
Service limits

Under AWS Basic Support and Developer Support, we can get access to
security checks like S3 bucket permissions that are open/insecure, improper
IAM usage, Multi-Factor Authentication (MFA) on root account, public
Amazon Elastic Block Storage (EBS), and Amazon Relational Database
Service (RDS) snapshots. With AWS Business Support and AWS
Enterprise Support, a lot more security checks can be accessed.

AWS Account Teams
Account Teams provide the first point of contact. This team can guide the
customers through their deployments and implementations and point them
to the right resources to resolve the security issues that they may encounter.

AWS Enterprise Support
AWS Enterprise Support provides a 15-minute response time and is
available 24×7 over the phone, chat, or email, along with a dedicated
Technical Account Manager. This is a concierge service that ensures that
the customers' issues are addressed as quickly as possible.

AWS Partner Network
AWS Partner Network offers hundreds of industry-leading products that are
equivalent, identical to, or integrated with the existing controls in your on-
premises environments. These products complement the existing AWS
services to enable you to deploy a comprehensive security architecture and
a more seamless experience across your cloud and on-premises

environments, as well as hundreds of certified AWS Consulting Partners
worldwide to help with your security and compliance needs.

AWS Professional Services
AWS professional services has a security, risk, and compliance specialty
practice to help the customers develop confidence and technical capability
when migrating the sensitive workloads to the AWS Cloud. AWS
Professional Services helps the customers develop security policies and
practices based on the well-proven designs and helps ensure that the
customers' security design meets the internal and external compliance
requirements.

AWS Marketplace
AWS marketplace is a digital marketplace with thousands of software
listings from the independent software vendors that make it easier to find,
test, buy, and deploy the software that runs on AWS. AWS Marketplace
Security products complement the existing AWS services to enable the
customers to deploy a comprehensive security architecture and a more
seamless experience across the cloud and on-premises environments.

AWS Security Bulletins
AWS security bulletins provide security bulletins around current
vulnerabilities and threats and enables the customers to work with the AWS
security experts to address various concerns like reporting abuse,
vulnerabilities, and penetration testing.

AWS Security Documentation
AWS security documentation shows how to configure the AWS services to
meet the security and compliance objectives. The AWS customers benefit
from a data center and network architecture that are built to meet the
requirements of the security-sensitive organizations. AWS provides a
security blog with posts covering a wide range of security topics that
include, but are not limited to, security best practices, advanced security
patterns, threat modeling, data masking, etc.

Click on the following link to access the security blogs from AWS:
https://aws.amazon.com/blogs/security/

AWS Well-Architected Framework
AWS Well-Architected Framework helps the cloud architects to build
secure, high-performing, resilient, and efficient infrastructure for their
applications. The framework includes a security pillar that focuses on
protecting the information and systems. The customers can use the AWS
Well-Architected Tool from the AWS Management Console or engage the
services of one of the AWS Partner Network (APN) partners to assist
them in conducting an automated review of the security posture of their
AWS hosted applications and workloads.

AWS Well-architected Tool
AWS well-architected tool helps the customers to review the state of their
workloads and compares them to the latest AWS architectural best
practices. This is a free tool and is available in the AWS Management
Console. The customers are required to answer a set of questions regarding
the operational excellence, security, reliability, performance efficiency, and
cost optimization. The AWS well-architected tool then provides a plan on
how to architect for the cloud using the established best practices.

Quick Note on AWS Management Console
There are quite a few ways to interact with the AWS services and resources.
AWS Management Console, AWS Command Line Interface (CLI), and
AWS Software Development Kit (SDK) are the commonly used options.
Throughout this book, we will use AWS Management Console and AWS
CLI interchangeably to work with the AWS services and their features.
AWS Management Console is a friendly web-based portal to search and
configure the AWS services, build new cloud-based applications, manage
AWS account, and much more. Once an AWS account has been created and
we have successfully logged in, the easiest way to explore all the available
AWS services is to click on the Services menu on the top-left corner of the
landing page, as shown in figure 1.4 as follows:

https://aws.amazon.com/blogs/security/

Figure 1.4: Exploring AWS services from AWS Management Console

For quick access to the Management Console pertaining to a specific AWS
service, we can simply type the name of the service in the Search bar at the
top of the AWS Management Console's landing page, as shown in figure 1.5
as follows:

Figure 1.5: Quick search for AWS services from AWS Management Console

The recently visited services are also listed on the Recently visited
services section under AWS Services on the landing page, as shown in
figure 1.6 as follows:

Figure 1.6: Recently visited services section in AWS Management Console

As mentioned earlier, we will also use AWS CLI extensively to interact
with the AWS services and resources. We will take a detailed look at AWS
CLI in Chapter 2: Identity and Access Management.

Conclusion
Security on the AWS public cloud is a shared responsibility. Both AWS and
the customers who run their applications and workloads on top of AWS are
partly responsible. While this chapter introduces some of the significant and
widely used security service offerings by AWS, it is in no way an
exhaustive list. AWS continuously introduces new services and announces
new features pertaining to the existing services.
In the subsequent chapters, we will dive deeper into the layered approach to
security, map the important AWS service offerings in each layer (IAM
controls, network, and infrastructure security, data security, logging,
monitoring, and tracking), and learn how to leverage these services to create
highly secure and reliable applications on the AWS cloud. The next chapter
is dedicated to the introduction and working of the AWS IAM service.

CHAPTER 2
Identity and Access Management

Introduction
One of the fundamental pillars of security is Identity and Access
Management (IAM). IAM, in general, governs 'WHO' can perform
'WHAT' actions on 'WHICH' resources. IAM is all about protecting,
controlling, and governing the access to the resources. AWS IAM is a web
service that helps in the identity management, and establishes the guard
rails, security controls, and policies to protect the AWS services and
resources.

Structure
In this chapter, we will cover the following topics:

Fundamentals of IAM
Identity
Access Management
AWS Tools for IAM

Objectives
The objective of this chapter is to introduce AWS Identity and Access
Management (IAM) service. We will learn how to create the various types
of identities supported by AWS IAM and manage them. We will understand
how to leverage the various access management strategies like delegation
and federation and create the policies and other controls to safeguard the
AWS services and resources. We will also take a quick look at the various
tools provided by AWS to help us create the policies and govern them.

Fundamentals of IAM

As the name suggests, Identity and Access Management has two parts –
identity and access management. Identities are essential principals that must
be provided with regulated access to the systems and resources. Identities
are mapped to some credential that is used to authenticate the identity in a
system. Access management defines the policies and control mechanisms
that are placed to protect the resources from an unauthorized access. Thus,
access management serves to authorize the identities in a system and
defines what they can do in the system. Figure 2.1 provides a schematic of
the significant elements in AWS IAM as follows:

Figure 2.1: Elements of Identity and Access Management in AWS

In AWS, identities are represented by the IAM users, IAM groups, and IAM
roles. Access management for these identities can be performed with Role
Based Access Control (RBAC), Attribute Based Access Control
(ABAC), or Access Control List (ACL). Both RBAC and ABAC are the
IAM policy-based strategies and are generally recommended by AWS to be
used with the fine-grained as well as the coarse-grained permissions. The
following are the description of these access control strategies.

Role Based Access Control: RBAC essentially defines the
permissions based on the user's job function; for example,
administrator, database administrator, DevOps engineer, security
auditor, etc. Here, 'role' is a general term that points to the part played
by a user and not to be confused with IAM Role which is an identity
within AWS. AWS IAM includes the managed policies that aligns to
the regular job functions. We can also create the customer managed
policies to tailor the permissions associated with the job functions.
These policies are then attached to identities like IAM user, IAM
group, and IAM role.
Attribute Based Access Control: ABAC is an access control strategy
that defines the permissions based on additional contextual attributes.
Within AWS, these attributes are called 'tags'. The tags can be attached
to the AWS resources including the IAM resources, like users or roles.
Unlike RBAC, where with the addition of new resources, the
permission policy must be updated, ABAC is a scalable strategy and
solely relies on the tags to automatically apply the permissions. We
must have strict control over the addition/deletion of the tags to/from
the resources, in order to implement this strategy.
Access Control List: ACLs are a legacy access control mechanism
and predates IAM. ACLs are used with the Amazon Simple Storage
Service (S3) buckets and objects. They are attached to a bucket or
object as a sub-resource and are evaluated when a request to access the
bucket or object is made.

Identity
In AWS IAM, there are primarily three types of identities – users, groups,
and roles. Let's look at each one of them in detail.

IAM user
An IAM user is an identity that is created in AWS to either represent a
person or an application, that interacts with the AWS resources. An IAM
user is identified by a friendly name, an Amazon Resource Name (ARN)
and an internal unique identifier. Each user has associated credentials for
the purpose of authentication. These long-term credentials can take the form

of console passwords, access key, etc. A user is granted the authorization
permissions to access the services or resources by associating the user with
a permission policy that defines what the user can do in AWS.

AWS account root user
The "Root" user is a special "all-powerful" IAM user that gets created along
with the AWS account. It is considered a best practice to avoid using this
user for the everyday operations and delete all the access keys associated
with the user and enable multi factor authentication (MFA). The root user
can be used initially to create the administrators who could then take up the
responsibility of creating or delegating the rights to create new users,
groups, and roles, and other actions.
The security of the root user is of utmost importance, and as such, the IAM
console dashboard offers some security recommendations in association
with the root user. Figure 2.2 shows a snapshot of the IAM console
dashboard with security recommendations; the green check against each
recommendation ensures that the root user has been secured:

Figure 2.2: IAM dashboard with security recommendations

User creation and credential management
The users can be created by selecting the Access Management | Users link
from the left navigation panel in the IAM console and then clicking on the
Add users button in the Users page. Each IAM user can have a set of

credentials to perform the activities within the AWS account; these
credentials are used to authenticate the user. There are primarily two types
of credentials that can be associated with an IAM user. The first type is long
term credential that comes in the form of programmatic access and AWS
Console access password. The second type is short-term credential that is
powered by AWS Security Token Service (STS). There is another type of
credential in the form of SSH key, that can be associated with a user to
authenticate the user to the AWS CodeCommit repository, but we will not
cover AWS CodeCommit in this book. Figure 2.3 shows how to assign
long-term credentials during the creation of a user from the IAM console as
follows:

Figure 2.3: Associating the credentials to a user from the IAM console

Note that, with only the programmatic access, a user will not be able to
access the AWS Management Console. However, the usage of AWS

Command Line Interface (CLI) and/or AWS Software Development Kit
(SDK) is still allowed for such a user.
The permission policies will also have to be associated with a user which
will essentially authorize the user to take the actions in the AWS account.
The users could be added to a group and inherit the permission from that
group or the inline policies could be attached directly to the user. We will
look at the IAM groups in the next section and the policies in a subsequent
section. If no permission policy is attached to the user, then the user will not
be able to perform anything in the AWS account.

If the console access is enabled for an IAM user, the user can access
the AWS console through the following URL:
https://<account-id>.signin.aws.amazon.com/console
Here, "account-id" refers to AWS account ID, which is a unique
identifier for an account.

Password policy
The AWS Management Console passwords are governed by a password
policy. A strong password policy helps to keep our AWS account safe. The
existing password policy could be accessed and edited by clicking the
"Access management | Account settings link in the left navigation panel
in the IAM console. To edit the policy, we have to click on the Change
button under the Password Policy section on the Account Settings page.
Figure 2.4 shows the page to modify the password policy as follows:

Figure 2.4: Password policy modification page in IAM console

IAM group
The IAM group is essentially a collection of logically grouped IAM users.
Permission management becomes a lot easier with the IAM groups. An
IAM group could be granted permissions by associating it with a
permissions policy. A user, when added to the group, automatically gets the
permissions assigned to the group. Similarly, if a user is moved out of the
group, that user will automatically have to give up the permissions
associated with that group. Note that, a group, in itself, is not mapped with
any credentials. The members of a group carry their individual credentials.
The relationship between the IAM user and the IAM group is many-to-
many. An IAM user can belong to more than one group and a group can
contain more than one IAM user. In AWS, the groups cannot be nested,
which means an IAM group can contain only IAM users and no other
groups. Figure 2.5 shows the relation between the users and the groups. In
the diagram, User1 is part of the Administrator group, User2 is part of both
the Administrator as well as the DevOpsEngineer group, while User3 is part
of the DevOpsEngineer group only. Take a look at Figure 2.5 as follows:

Figure 2.5: Relation between IAM users and IAM groups

The creation of a group is very straightforward and could be easily done
from the IAM console by selecting the Access Management | User groups
link in the left navigation panel in the IAM console.

IAM role
The IAM role is a special type of identity that can be assumed by a trusted
entity. Once the role is assumed, the short-term credentials are provided
leveraging the AWS Security Token Service (STS) for that role session.
The IAM roles are unique in terms of the policies that are attached to them.
There are two types of policies that are attached to an IAM role, which are
as follows:

Trust Policy: Trust policy is a JSON document that is used to define
the trusted principals or entities that can assume the role. An IAM role
can be assumed by the following types of trusted entities:

IAM users in the same AWS account or a different AWS account
AWS services like EC2, Lambda, etc.
Federated users authenticated by an external identity provider
(IdP) that is SAML2.0 or OpenID Connect (OIDC) compliant

We will take a closer look at the various trusted entities in the
subsequent sections.
Permissions Policy: Permissions policy is a JSON document that
defines the actions that the role can perform and the resources on
which such actions can be performed. We will learn about the
permission policy in greater detail in a subsequent section.

The details of these policies will be discussed in a subsequent section.

A quick introduction to AWS-CLI
Before we proceed any further, let's take a quick look at AWS CLI and how
to install, configure, and use it. AWS CLI is a unified tool to access and
manage the AWS services. Throughout this book, we will use AWS CLI,
and this section will provide the details around the installation and
configuration of the same. The following is the link that explains the
installation steps for AWS CLI on the major operating systems:
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
We can easily check for a successful installation by using the following
command:

$ aws --version

With the installation steps out of the way, let's turn our attention to
configuration. AWS CLI works with the credentials which are placed in the
file called credentials that is located in the user's home directory inside a
folder named .aws (In Linux, the full path is: ~/.aws/credentials). We
can start configuring AWS CLI by typing the following command:

$ aws configure

This will configure the "default" profile for AWS CLI. The configuration
option interactively asks for the following – “AWS Access Key ID", "AWS
Secret Access Key", "Default region name" and "Default output format".
The access key ID and secret access key generally corresponds to the long-
term credentials associated with a user. However, the short-term credentials
powered by Amazon STS could also be used.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

TIP: Instead of placing the credentials in a file, we could also use the
environment variables to setup the credentials: AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY

We could also create a custom profile and set up the credentials associated
to that profile (instead of default). In fact, we could create multiple profiles
to suit our needs. The following is the command to configure a custom
profile:

$ aws configure --profile s3admin

The name of a profile is generally guided by the permissions granted to the
corresponding user.
While using AWS CLI to access the various AWS services, we will have to
specify the profile name explicitly in the command line with the --profile
option, unless we want to use the default profile, in which case the --
profile option could be omitted. This option (--profile) offers an easy
way to switch between the profiles when executing the AWS CLI
commands. The following is an example that uses the Amazon Simple
Storage Service (S3) CLI command with a custom profile:

$ aws s3 ls --profile s3admin

For simplicity, we will use the default profile with the
AdministratorAccess policy permission throughout this book, unless there
is a specific need to use a custom profile. However, note that the
AdminstratorAccess policy is very powerful and broad; hence it might not
always be the best fit considering the principle of least privilege.
Now that we know how to work with AWS CLI, let's use this tool to
perform some user and group management operations. First, we will create
a user and assign the credentials. The following are the set of commands to
carry this out:

$ aws iam create-user --user-name bpb479user2
$ aws iam create-login-profile --user-name bpb479user2 \
--password xxxxxxxx --password-reset-required

$ aws iam create-access-key --user-name bpb479user2

At this point, the user has been created and has been given both the AWS
Management Console access as well as the programmatic access. The
create-access-key command produces AccessKeyId and
SecretAccessKey combination for the user and outputs the same. The
following is a sample output of the command:

{

"AccessKey": {

"UserName": "bpb479user2",

"AccessKeyId": "AKIASACILIXPL67WXTHK",

"Status": "Active",

"SecretAccessKey": "e58PlT7dnyxxxxxxxxxxxxxxxxxxxxxxx",

"CreateDate": "2021-09-01T23:50:15Z"

}

}

At this point, we will have to take note of the AccessKeyId and
SecretAccessKey (or create a new profile with these credentials), since
there is no way to get back the SecretAccessKey after this, not even from
the AWS Management Console.
The next set of commands will create a new group, add the user to that
group, and then attach the policy to the group. In this case, we have used an
AWS managed policy named "ReadOnlyAccess" identified by the policy
ARN. This ARN could be retrieved from the IAM console by visiting the
Access Management | Policies page, then searching for the specific policy,
clicking on it, and finally copying the policy ARN from the policy Summary
page. The policy ARN could also be retrieved by using the list-policies
command with AWS CLI (aws iam list-policies).

$ aws iam create-group --group-name bpb479group
$ aws iam add-user-to-group --user-name bpb479user2 \
--group-name bpb479group

$ aws iam attach-group-policy --group-name bpb479group \
--policy-arn arn:aws:iam::aws:policy/ReadOnlyAccess

TIP: Use the following link to check the documentation on the AWS
CLI commands:
https://awscli.amazonaws.com/v2/documentation/api/latest/index.html

https://awscli.amazonaws.com/v2/documentation/api/latest/index.html

Access Management
Access management is all about creating policies and controls (and
governing them), so that only the authorized identities are granted rights to
use a service or access a resource, while preventing such usage rights and
access for the unauthorized identities.

IAM Policy
IAM policy is at the core of access management in AWS. Authorization
strategies like Role Based Access Control (RBAC) and Attribute Based
Access Control (ABAC) are based on the IAM policies. AWS IAM
primarily uses policies which are defined in the JSON format to allow or
deny access protected resources. An IAM policy essentially encapsulates
the granular level permissions that can be associated with an identity or
resource. The permissions typically establish the actions that can be
performed or 'not' performed on a set of resources. The IAM policy can
either be AWS managed or customer managed or inline (directly attached to
the identity). Let us delve into the details of the structure of a policy to
understand this better.

Structure of a policy
The important elements in a JSON format IAM policy document are as
follows:

Version: Represents the supported versions of a policy document.
There are two versions – “2012-10-17" and "2008-10-17". The version
"2008-10-17", is the default version when Version element is not
explicitly defined. However, "2012-10-17" is the recommended and
latest version, and features like policy variables are supported in this
version.
Statement: Statement is a mandatory element and can be either of
type object or array. Statement consists of four sub elements –
“Effect", "Action", "Resource", and "Condition" (optional), which are
defined as follows:

Statement/Effect: Effect can have two values – “Allow" or
"Deny" – and it specifies the outcome of the statement in terms of

granting or denying access. Note that, explicit "Deny" always has
a higher precedence over "Allow" on a given set of resources.
Statement/Action: Action represents an array of actions for
which we are either granting or denying access. Each item in this
array is a "key:value" pair, where the key represents a service and
the value represents an action on that service (for example:
s3:ListBucket, sqs:SendMessage, ec2:StartInstances, etc.).
Statement/Resource: Resource defines the AWS resources or
objects that the statement covers. Resources are specified using
Amazon Resource Names (ARNs) and wildcards (*) to indicate
the statement applied to all the resources.
Statement/Condition: Condition element is optional and is
typically used to control when the policy is in effect. The
condition element is used to build the expressions that take the
following form:
"Condition" : {"<condition-operator>" : {"<condition-

key>" : "<condition-value>"}}

There are several condition operators available which can be used to
create very powerful IAM policies; these are as follows:

String condition operators: StringEquals, StringNotEquals,
StringLike, StringNotLike, StringEqualsIgnoreCase,
StringNotEqualsIgnoreCase

Numeric condition operators: NumericEquals,
NumericNotEquals, NumericLessThan, NumericLessThanEquals,
NumericGreaterThan, NumericGreaterThanEquals
Date condition operators: DateEquals, DateNotEquals,
DateLessThan

Boolean condition operator: Bool
IP address condition operators: IpAddress, NotIpAddress
ARN condition operators: ArnEquals, ArnNotEquals

The condition keys can be global or service specific. The global
condition keys have a aws: prefix, whereas the service specific
condition keys have the prefix of the service name like
secretsmanager:SecretId. Some of the significant global condition

keys are aws:userid, aws:username, aws:SourceIp, aws:SourceVpce,
aws:MultiFactorAuthPresent, aws:PrincipalAccount,
aws:PrincipalArn, aws.PrincipalType, aws:PrincipalTag,
aws:RequestTag, aws:SecureTransport, aws:SourceAccount,
aws:SourceArn, etc.
Some examples of the service level condition keys are
secretsManager:SecretId, secretsManager:VersionId,
secertsManager:VersionStage, s3:TlsVersion, s3:authType,
s3:signatureAge, s3:prefix, s3:x-amz-acl.
Policy variables: The policy variables are basically placeholders
when the exact value of a resource or condition key is not known
during the creation of the IAM policy. The values of the condition
keys in the policies can be used as the policy variables. A policy
variable is marked by a "$" followed by a pair of curly braces in the
policy document. The variable name is placed inside the curly braces;
for example, ${aws:username}.

IAM policy examples
A good understanding of the IAM policies is necessary for implementing
appropriate access control. The following are some interesting examples
that leverage the policy structure elements that we just discussed:

Administrator Access: This is an extremely powerful, AWS managed
policy and provides full access to all the AWS services and resources.
It goes by the name AdministratorAccess. The statement reads that
"all" actions on "all" resources are allowed. This policy should be
used with caution as it provides unlimited access to the identity (user,
group, or role) with which it is attached. Note that, this is an example
of how Role Based Access Control (RBAC) is implemented with the
IAM policy. The following is an example of Administrator Access
policy:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": "*",

"Resource": "*"

}

]

}

Describe EC2 images and instances: The following is an example of
a customer managed policy that essentially provides two permissions
(describe EC2 images and describe EC2 instances) on all the images
and EC2 instances.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "EC2Describe",

"Effect": "Allow",

"Action": [

"ec2:DescribeImages",

"ec2:DescribeInstances"

],

"Resource": "*"

}

]

}

Controlling access to S3: This policy leverages the policy variable
(aws:username) to control the access to the bucket named "bpb479-
bucket". When the policy is evaluated, ${aws:username} is replaced
by the name of the current user. Moreover, the policy also uses the
condition operator "StringLike" and the condition key "s3:prefix".
Basically, the statement allows the read/write/list permissions on the
bucket named "bpb479-bucket" to a user only if the prefix contains
the user's name. Note that, a prefix is the complete path in front of the
S3 object name. Thus, this policy assumes that every user will have
their own directory in the bucket. Look at the following example:

{

"Version": "2012-10-17",

"Statement": [

{

"Action": [

"s3:ListBucket",

"s3:GetObject",

"s3:PutObject"

],

"Effect": "Allow",

"Resource": ["arn:aws:s3:::bpb479-bucket"],

"Condition": {

"StringLike": {"s3:prefix":

["${aws:username}/*"]

}

}

}

]

}

Date based access to DynamoDB: This policy allows all actions on
DynamoDB only if the user is authenticated for using multi-factor
authentication (MFA). Additionally, these actions are only allowed
between specific dates. The policy leverages Boolean condition key –
aws:MultiFactorAuthPresent and date-based conditions with
aws:CurrentTime key. Look at the following example:

{

"Version": "2012-10-17",

"Statement": {

"Effect": "Allow",

"Action": [

"dynamodb:*"

],

"Resource": "*",

"Condition": {

"Bool": {"aws:MultiFactorAuthPresent": true},

"DateGreaterThan": {"aws:CurrentTime": "2021-08-

30T00:00:00Z"},

"DateLessThan": {"aws:CurrentTime": "2021-09-

03T23:59:59Z"}

}

}

}

Attribute Based Access Control (ABAC): This policy is an example
of how the ABAC authorization strategy could be implemented using
the IAM policy. The policy leverages the "Condition" element with
specific condition keys – iam:ResourceTag and aws:PrincipalTag.
Essentially, this policy allows the users to assume any role only when
the project tag associated with the identity and the role matches. This
means when the role is created, it has to be assigned the project tag
with a specific value. Also, when the IAM user is created, it must also
be assigned the project tag along with the same value. Look at the
following example:

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "AssumeRoleWithMatchingTags",

"Effect": "Allow",

"Action": "sts:AssumeRole",

"Resource": "*",

"Condition": {

"StringEquals": {

"iam:ResourceTag/project":

"${aws:PrincipalTag/project}"

}

}

}]

}

TIP: Refer to the following link to study some interesting IAM policy
examples:
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_e
xamples.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html

AWS Organizations
In practice, the enterprises tend to use multiple AWS accounts to isolate the
departments, deployment environments, workstreams, etc. While this multi-
account strategy provides the required isolation, it however introduces
complexity in terms of creation and maintenance of accounts, billing,
policies, IAM, etc. The AWS Organizations can help to centrally manage,
govern, and consolidate the entire AWS ecosystem of an enterprise that is
spread across multiple AWS accounts. AWS Organizations introduce the
concept of a master account and multiple child accounts created or invited
(to join the AWS Organization) by the master account.
AWS Organizations come in two flavors based on the feature sets, which
are as follows:

Consolidated billing features: Consolidated billing allows us to
access the account wise billing directly in the master account, which
includes both the master as well as the child accounts. Moreover, a
single payment method could be used across all the accounts under an
AWS Organization. Note that, the consolidated billing does provide
the cost benefits (or volume discounts) which is a major driver for the
enterprises to adopt AWS Organizations, which as a service is free.
All features (default): When using the 'All features' flavor, in addition
to the consolidated billing, we can create new accounts and/or invite
the existing accounts to join the organization. It also helps to group the
accounts into Organizational Units (OU) by use-case, project,
business units, etc. Furthermore, we can apply Service Control
Policies (SCP) and associate them with OUs or individual accounts,
create organization-wide backup policies, create tag policies to
standardize tags across an organization, etc.

We must note that while we can migrate from 'Consolidated billing features'
to 'All features', this migration is one-way. Once migrated, we cannot
migrate back to 'Consolidated billing features'.
The Figure 2.6 shows a sample hierarchy that can be created with AWS
Organizations. The figure shows the master management account being part
of the root OU. Root OU is the parent of all the other OUs and accounts in
the organization. There are two child OUs ("Production" and "Non-Prod")
under Root OU. Each of these have multiple accounts under them. Note

that, OUs can be nested, and the policies (like SCP) are inherited from the
parent OU or master account into a nested OU or child account. Look at
Figure 2.6 as follows:

Figure 2.6: Hierarchy of root OU, child OUs and accounts

Service control policy
Service control policy (SCP) is a very powerful feature to centrally
manage and control the AWS child accounts and OUs from the master
account in an AWS Organization. The policies set in the master account
cannot be bypassed by the roots and administrators of the child accounts.
Once AWS Organizations is enabled in the master account, to enable SCP,
we need to select Policies from the left navigation panel in the AWS
Organizations service page and then select Service control policies
from the Policies page on the right. Finally, on the Service control
policies page, click on Enable service control policies as shown in
the following figure 2.7

Figure 2.7: Enabling Service control policies for AWS Organizations

As mentioned earlier, SCPs are inherited from the parent OUs or master
account. However, an explicit ‘deny’ (appearing anywhere in the hierarchy)
always takes precedence.
Once enabled, FullAWSAccess is an AWS managed policy that is available
to be attached to the Root OU or master account or any child OUs. We can
also create custom policies, by clicking on the Create policy button on the
Service control policies page and then subsequently attaching the
policy to a target OU or account. Figure 2.8 shows the relevant page from
where we can create the new policies and attach them (from Actions drop-
down) to targets, as follows:

Figure 2.8: Create a custom service control policy

SCP can help to whitelist or blacklist the IAM actions that can be applied to
the OU or accounts. However, the master account is outside the scope of
SCP. When blacklisting, we can specify certain AWS services to be
explicitly denied in the policy and then attach it to a target OU or account;
whereas, with whitelisting, we can specify the AWS services that are
allowed. The following is an example of an SCP that when attached to an
OU or account can prevent the users (in the child accounts or target
account) from deleting the Amazon VPC flow logs:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Deny",

"Action": [

"ec2:DeleteFlowLogs"

],

"Resource": "*"

}

]

}

TIP: The following link could be used to study some Service control
policy examples:
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_ma
nage_policies_scps_examples.html

Identity-based policy
The identity-based policies are attached to an identity like IAM user, group,
or role. Such a policy is used to define what an identity can do on a set of
AWS resources. Figure 2.9 shows how an identity-based policy is attached
to the identities to access a representative AWS resource (like S3 bucket),
as follows:

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples.html

Figure 2.9: Identity based policy

All the examples, which we have seen in the IAM policy examples section,
are identity-based policies.
The identity-based policies can be categorized as either managed policies or
inline policies. Managed policies can be managed either by AWS or by the
customer, and they can be attached to multiple identities. In other words, the
managed policies are reusable. Inline policies, on the other hand, are
directly attached to the identities and form a strict one-to-one relationship.
Let's looks at the AWS CLI commands that could be used to create a
customer managed policy and associate it with an identity. We assume that
the file policy.json has the required permissions defined in the JSON
format. Then, we go ahead to create a policy named
CustomReviewerPolicy and use it's ARN to attach the policy directly to a
user named bpb479reviewer and to a group named Reviewers. The
following are the AWS CLI commands:

$ aws iam create-policy --policy-name CustomReviewerPolicy \
--policy-document file://./policy.json

$ aws iam attach-user-policy --user-name bpb479reviewer \
--policy-arn arn:aws:iam::<account-
id>:policy/CustomReviewerPolicy

$ aws iam attach-group-policy --group-name Reviewers \
--policy-arn arn:aws:iam::<account-
id>:policy/CustomReviewerPolicy

Note that, for the AWS managed policies, we can simply get the policy
ARN and use the same to attach the policy to an identity. However, for a
customer managed policy, we will have to create the policy first and then
attach the same with an identity.

Permission boundaries
A permission boundary is used to set the maximum permissions that can be
granted to an IAM entity (users and roles) by an identity-based policy.
Thus, if the permission boundary is set, the effective permissions granted to
the identity is the intersection between the permissions granted to the
identity, by the identity-based policies and the permission boundary. So
essentially, a permission boundary is used to set the permission limits for an
identity. It does not grant any permissions on its own. It helps to limit the
scope of the IAM users and roles and prevent privilege escalation.
Let's try to understand this with an example. We consider a user named
"bpb479user". Now, we'd like to set the permission boundary for this user,
so that the user can perform anything with S3 and EC2, but nothing more.
So, we create an IAM policy (named
PermissionBoudaryForS3AndEC2Policy) that looks like the following:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"s3:*",

"ec2:*"

],

"Resource": "*"

}

]

}

Now we can associate this policy as a permission boundary for the
bpb479user user with the following AWS CLI command:

$ aws iam put-user-permissions-boundary \
--permissions-boundary arn:aws:iam::<account-id>:policy/
PermissionBoudaryForS3AndEC2Policy \
--user-name bpb479user

Of course, we could have used an AWS managed policy as well to define
the permissions boundary for the user.

To create a permission boundary for an IAM role (instead of an IAM
user), use the following AWS CLI command:

$ aws iam put-role-permissions-boundary
--permissions-boundary <policy-arn>
--role-name <role-name>

At this point, if the "bpb479user" is granted the DynamoDB related
permissions (for example, "dynamodb:GetItem", "dynamodb:Scan",
"dynamodb:Query", etc.) by virtue of an identity based policy that is
attached to the user, the user still cannot perform any actions outside the
permission boundary. This means, any DynamoDB operation by the user
will fail.

Resource-based policy
The resource-based policies are attached to the AWS resources (like
Lambda functions, S3 buckets, SQS queue, SNS topics, KMS keys, Secrets
Manager secrets, etc.) instead of the identities. Such a policy specifies
which principals or entities have access to that specific resource and what
actions they can perform on it. Figure 2.10 shows how a resource-based
policy is attached to the representative AWS resource (like S3 bucket), as
follows:

Figure 2.10: Resource based policy

Essentially, a resource-based access policy has an embedded trust policy
signified by the Principal element in the JSON. The following is an
example of a simple resource-based access policy that could be attached to
a Lambda function named BPB479Lambda. The policy grants permission to a
particular API's method (identified by ARN which also includes API Id:
9f2eds6pii) to invoke the Lambda function, as follows:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"Service": "apigateway.amazonaws.com"

},

"Action": "lambda:InvokeFunction",

"Resource": "arn:aws:lambda:<region>:<account-

id>:function:BPB479Lambda",

"Condition": {

"ArnLike": {

"AWS:SourceArn": "arn:aws:execute-api:<region>:<account-

id>:9f2eds6pii/*/GET/companies"

}

}

}]

}

S3 Bucket Policy
Amazon S3 bucket policy is basically an implementation of the resource-
based policy. Such a policy is directly attached to the S3 bucket and
introduces a granular level of permission for the bucket and its contents.
The bucket policies are very effective in certain scenarios which are
mentioned as follows:

Make objects within the bucket public.
Make objects in a bucket accessible only from a specific Classless
Inter-Domain Routing (CIDR) range.
Allow cross account access to S3 bucket.

The following is an example of a simple bucket policy:

// File: policy.json

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"AWS": ["arn:aws:iam::<account-id>:root"]

},

"Action": "s3:*",

"Resource": [

"arn:aws:s3:::bpb479-bucket",

"arn:aws:s3:::bpb479-bucket/*"

]

}]

}

The scope of access could be reduced by specifying a user instead of
"root" in the Principal element; for example, arn:aws:iam::

<account-id>:user/<user-name>.

The preceding policy grants all the S3 based actions to the AWS account
(specified by <account-id>) on the bucket named bpb479-bucket and its
contents. This policy also signifies that bpb479-bucket trusts the AWS
account (specified by <account-id>) to take such actions on it. The
important point to note here is that the suffix root in the Principal element
basically points to the authenticated and authorized principals in the
account and not the special omnipotent root user created along with the
creation of an AWS account.
Here is the following is the AWS CLI command to apply the bucket policy
(in policy.json file) described earlier, to a bucket named bpb479-bucket:

$ aws s3api put-bucket-policy --bucket bpb479-bucket \
--policy file://policy.json

Trust policy
We already know that the IAM roles must be associated with a trust policy
that signifies which principals can assume that role. A trust policy is a
required resource-based policy attached to a role. The following is an
example of a trust policy:

// File: trustpolicy.json

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"Service": "lambda.amazonaws.com"

},

"Action": "sts:AssumeRole"

}

]

}

If this trust policy is attached with an IAM role, then based on the trust,
only AWS Lambda can assume that role by virtue of the allowed
sts:AssumeRole action. Here, we have considered the AWS Lambda
service as the principal; however, any other AWS service or account could
have acted as the trusted principal.
Let us quickly review how everything ties together – trust policy,
permissions policy, and IAM role. We will use AWS CLI to better
understand how these associations work. The first command is meant to
create a role named BPB479LambdaRole with a trust policy that was
introduced recently. The trust policy essentially signifies that only the
Lambda service can assume this role, as follows:

$ aws iam create-role --role-name BPB479LambdaRole \
--assume-role-policy-document file://./trustpolicy.json

The next command creates a permission policy for the IAM role named
BPB479LambdaPermissionsPolicy. This policy file is an identity-based
policy JSON that describes all the permissions that needs to be granted to
the Lambda function in order to enable it to carry out its responsibilities, as
follows:

$ aws iam create-policy --policy-name
BPB479LambdaPermissionsPolicy \
--policy-document file://./policy.json

Here’The following are the contents of the sample policy.json file. As we
can easily see, it's an identity based policy that grants s3:GetObject action
on bpb479-bucket. In addition, it also grants the permission to create a
specific log group (named BPB479Lambda) and create the log streams within
that log group, as follows:

// File: policy.json

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"s3:GetObject"

],

"Resource": [

"arn:aws:s3:::bpb479-bucket/*"

]

},

{

"Effect": "Allow",

"Action": [

"logs:CreateLogStream",

"logs:CreateLogGroup",

"logs:PutLogEvents"

],

"Resource": [

"arn:aws:logs:*:<account-id>:log-

group:/aws/lambda/BPB479Lambda:log-stream:*",

"arn:aws:logs:*:<account-id>:log-

group:/aws/lambda/BPB479Lambda"

]

}

]

}

Finally, we associate the IAM role with the permissions policy ARN as
follows:

$ aws iam attach-role-policy --role-name BPB479LambdaRole \
--policy-arn arn:aws:iam::<account-
id>:policy/BPB479LambdaPermissionsPolicy

Resource based policy versus IAM role
The distinction between the resource-based policy and the IAM role
becomes very clear when we consider them with respect to the cross-
account access. Cross account access could be managed in two ways – use
IAM role as a proxy or attach the resource-based policy to the resource.
Here, we assume that the resource in question, supports the resource-based
policy (for example, S3 bucket).

When using an IAM role as a proxy, the user in the trusted account will
have to assume the cross-account role to access the S3 bucket. However, in
doing so, the user gives up all the original permissions and takes up the
permissions assigned to the role. However, when using a resource-based
policy, the principal does not give up any existing permissions.

Session policy
The session policies are passed as a parameter when creating a temporary
session for a role or federated user. When a role is assumed by calling
AssumeRole, AssumeRoleWithSAML, or AssumeRoleWithWebIdentity,
Amazon STS APIs (we will discuss these APIs in detail in an upcoming
section - "Federation"), a unique session is created and the session policies,
in the form of JSON policy documents, could be passed. The resulting
session permissions are the intersection of the session policies and identity-
based policies and the intersection of session policies and the resource-
based policies.

Evaluation of policies
Now that we have looked into the various types of policies that can be used
to enforce access control, let's take a deeper look at how these policies are
evaluated. The first and foremost point to realize is that "deny" always takes
precedence over "allow". AWS starts the evaluation of the policies with an
implicit deny. Implicit deny is a situation where there is neither an explicit
deny nor an explicit allow. In contrast, an explicit deny is characterized by
an explicit deny statement. Let's consider some specific cases to understand
how the policies are evaluated by AWS.

Identity based policies and resource-based policies
When an IAM entity requests access to a resource within the same account,
AWS evaluates all the permissions granted by both the identity-based as
well as the resource-based policies attached to the IAM entity and the
resource respectively. The outcome is the union of permissions in both the
policies. This means, if an action is allowed in any one of the policies or
both, then AWS allows the action. However, an explicit deny in any one of
the policies results in a deny.

Identity based policies and permission boundary
Evaluation of the permissions in the identity-based policies and permission
boundary results in a permission set that represents the intersection of the
two policies. Essentially, a permission boundary, if applied, can reduce the
scope of an identity-based policy. Once again, an explicit deny in any one
of the policies results in a deny.

Identity based policies and service control policies (SCP)
If the user belongs to an AWS account that is part of an AWS Organization,
then the service control policies or SCPs will affect the policy evaluation.
The resulting permissions are the intersection of the two policies.
Effectively, this means that an action will have to be allowed in both the
policies to be finally allowed by AWS. Explicit deny in the policies will
result in a deny.

The following link provides a flowchart based view of the IAM policy
evaluation for both the intra account and the cross account scenarios:
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policie
s_evaluation-logic.html

Delegation
Delegation refers to granting of permissions to some other account to allow
access to the resources that we control. Thus, delegation involves setting up
of trust between the two accounts. Delegation of authority involves
delegating roles that the identities from the trusted account can assume
temporarily, without any overall privilege escalation. Delegation plays an
important role in simplifying the identity and access management when
multiple AWS accounts are involved. The delegation model allows us to
maintain the identities and policies in a single place and use the cross-
account roles to delegate authority, based on the trust construct of an IAM
role.

Cross account role
A cross-account role establishes trust between two accounts and allows one
account to access the resources in the other. Let's consider the scenario

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

where an organization has multiple AWS accounts and one of them is an
"identity or landing account". The identity account is basically a central
account for the identities and users/groups should not have access to
services or create resources in this account. In this setup, all other accounts
must trust the identity account. Any user will first log into the identity
account and then jump onto other accounts based on the assigned
permissions. The following are the steps to achieve this trust:

1. Create a cross account role in the non-identity account with the
following details:

The role has a trust policy that trusts the identity account to
assume this role. The trust-policy would look like the following:
{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::<identity-account-id>:root"

},

"Action": "sts:AssumeRole"

}

]

}

Note that, this trust policy could leverage the IAM policy
Condition to enforce MFA to be used by the identities of the
trusted account.
The role is attached to a permission policy that grants access to a
specific set of resources in the non-identity account, to the
identity account based on requirements (for example, access to
the S3 buckets or EC2 instances).

2. Take note of the cross-account role ARN that got created in the non-
identity account. The ARN would look like the following:

arn:aws:iam::<non-identity-account-id>:role/<cross-
account-role-name>

3. Create an IAM policy in the identity account that allows the
sts:AssumeRole action against the resource identified by the role
ARN in step-2. The permission policy would look like the following:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": "sts:AssumeRole",

"Resources": "arn:aws:iam::<non-identity-account-

id>:role/<cross-account-role-name>"

}

]

}

4. Attach the IAM policy in step-3 with specific identities in the identity
account.

At this point, the authenticated and authorized users in the identity account
that have been granted permission to assume the cross-account role (created
by the non-identity account), can access specific resources in the non-
identity account based on the permission policy attached to the cross-
account role. The cross-account role leverages AWS STS to provide short-
term credentials to identities in the trusted account (identity account), which
could in turn, be used to access the resources.

Cross account role with third-party accounts
When a cross account role has to be shared with an external account that
belongs to a third-party, extra security measures needs to be taken. This is
so because, the cross-account role construct can be subjected to a privilege
escalation attack, also known as the confused deputy problem. Let's look
at Figure 2.11 and see how this attack works, as follows:

Figure 2.11: Confused deputy problem

In Figure 2.11, we assume that the blue account on left is ours and we trust
the green account (trusted account) in the middle. We have also created a
cross account role (R1) with appropriate permissions to access the resources
in our account and then shared the ARN of the cross-account role with the
trusted account. Thus, the trust setup enables the green account to assume
the R1 role and access the resource in our account. So far, so good.
Now, assume that the trusted account works with multiple AWS accounts,
and a malicious red account on the right somehow gets to know or guesses
R1's ARN, and instead of sharing its own cross account role ARN, it shares
R1's ARN with the green account. The green account doesn't verify the
owner of the shared role. At this point, the red account could trick the green
account, which is trusted by our account, to gain unauthorized access to our
'blue' secure resources. The trusted green account is the confused deputy
here, that can unwittingly give access to the resources in our account to an
untrusted and malicious red account.
To avoid such a situation, external Id is used. In essence, the external Id
is a shared secret between our account and the trusted account. Unless the
correct external Id is supplied while assuming the role, the operation fails.
The following is a two-step modification to the standard cross account role
situation:

Add a condition to the trust policy of the blue account's cross account
role that uses the sts:ExternalId condition key and assign it a value
equal to the shared secret as follows:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::<green-account-id>:root"

},

"Action": "sts:AssumeRole",

"Condition": {

"StringEquals": {"sts:ExternalId": "<shared-secret>"}

}

}

]

}

The trusted green account will have to pass the correct shared secret as
external Id in order to assume the role. In the following AWS CLI
command, if the external Id is not supplied, then the operation fails:

$ aws sts assume-role \
--role-arn arn:aws:iam:<blue-account-id>:role/<cross-
account-role-name> \
--role-session-name-temp session1 \
--external-id <shared-secret>

With the "external Id" setup, even if the red account shares the ARN of
our cross-account role (R1), it will not know the secret external Id, and
hence the attempt to assume role R1 by the green account fails due to
condition mismatch. Typically, the external Id is a non-guessable, long
string of arbitrary characters.

Federation
In identity federation, the service provider trusts an external identity
provider (IdP) to authenticate the users and then lets the authenticated users
to assume temporary roles for accessing the resources. In essence, the user
management remains outside the scope of the service provider.
AWS supports several flavors of federation where AWS acts as the service
provider and trusts the external IdPs to authenticate the users. The
authenticated users are given temporary credentials to either access the
AWS resources or the AWS Management console.

SAML2.0 based federation
This type of federation plays a vital role when there exists a SAML2.0
compliant directory or identity store (like Microsoft Active Directory,
ADFS, etc.), possibly on-premise, which needs to be integrated with AWS.
The integration essentially links the on-premise directory or identity store
with the role based AWS access.
SAML based federation rests on the trust between AWS and the on-premise
identity provider (IdP). To establish this trust, SAML metadata files need to
be exchanged between the IdP and AWS. The SAML metadata files
describe the corresponding identity provider and service provider (that is,
AWS). The SAML metadata file from IdP is uploaded to create an SAML
identity provider in AWS. Figure 2.12 shows how to configure an SAML
provider (named BPB479SAMLProvider) from the IAM Management console
page, as follows:

Figure 2.12: Configuration of a SAML identity provider

The SAML metadata XML from AWS side is available at the
following link: https://signin.aws.amazon.com/static/saml-
metadata.xml

Once the identity provider is configured, the IAM role needs to be created
which the application will attempt to assume. The trust policy associated
with this role must specify the recently created SAML identity provider (in
AWS) as Principal and the action as sts:AssumeRoleWithSAML. The trust
policy looks somewhat like the following:

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"Federated": "arn:aws:iam::<account-id>:saml-

provider/BPB479SAMLProvider"

},

"Action": "sts:AssumeRoleWithSAML"

}]

}

This trust policy could specify additional conditions to allow the federated
users that match certain SAML attributes to access the IAM role (for
example, saml:aud, saml:iss, etc.).
Figure 2.13 shows how the users of a client application are authenticated in
real time by the IdP against an on-premise SAML2.0 based identity store,
and in return, gets necessary SAML assertions. These assertions, along with
role ARN (to be assumed), are then sent to Amazon STS by calling
AssumeRoleWithSAML API. Upon success, the API returns the credentials
which can then be used to access the AWS resources (like S3 buckets or
DynamoDB, etc.), as shown in Figure 2.13 as follows:

https://signin.aws.amazon.com/static/saml-metadata.xml

Figure 2.13: Interaction for SAML2.0 based federation

AssumeRoleWithSAML
The Amazon STS AssumeRoleWithSAML API call is at the heart of this
integration. The application requesting access to the AWS resource, calls
the AssumeRoleWithSAML API and passes the following:

RoleArn: ARN of the IAM role that the application wishes to assume.
PrincipalArn: ARN of the SAML identity provider in IAM that
describes the on-premise IdP.
SAMLAssertion: SAML authentication response (base64 encoded)
provided by the IdP.
Optionally, the session duration and session policy could also be
passed.

In response, along with the other parameters, Amazon STS returns the AWS
scoped credentials (combination of AccessKeyId, SecretAccessKey, and
SessionToken), which then could be used by the application to access the
resources in the AWS account as defined by the assumed role's permission
policy.
Note that, SAML2.0 based federation could also be used to access the AWS
Management console.

Web Identity Federation

With the Web Identity Federation, the users of mobile or web applications
can authenticate themselves with the well-known web identity providers
like Google, Facebook, Amazon, or any other OpenID Connect (OIDC)
compatible IdP. With an existing trust in place between AWS and these
OpenID Connect providers, the users can then exchange provider-specific
tokens for the AWS scoped temporary credentials (from Amazon STS) that
is mapped to an IAM role with the required permissions. Subsequently,
these credentials could be used to access the AWS resources (as allowed by
the permissions policy associated with the assumed IAM role).
With well-known web identity providers like Amazon, Cognito, Google,
and Facebook, AWS has a pre-configured trust relationship with these
providers. This means, we do not have to create the identity provider
entities from them in the IAM console. However, for any other OIDC
complaint provider, we have to first establish the trust by creating an
identity provider, as shown in Figure 2.14 as follows:

Figure 2.14: Configuration of custom OIDC identity provider in IAM console

The next step is to create the IAM role with a trust policy that declares the
OIDC provider as the Principal. The following is how the trust policy
looks like for the Google provider:

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"Federated": "accounts.google.com"

},

"Action": "sts:AssumeRoleWithWebIdentity",

"Condition": {

"StringEquals": {

"accounts.google.com:aud": "<app-id>"

}

}

}]

}

The trust policy specifies a Condition to restrict the permissions only to the
specific application by using the pre-defined key,
accounts.google.com:aud. The value corresponding to this key is the
application Id received from the Google developer portal while registering
our application.
Table 2.1 shows the designated Principal for the common OIDC providers
along with the Condition keys that could be used to create a trust policy, as
follows:

Web Identity
Provider

Principal Condition Key

Amazon "Principal":
{"Federated":"www.amazon.com"}

"Condition": {"StringEquals":
{"www.amazon.com:app_id": "
<app-id>"}}

Facebook "Principal":
{"Federated":"graph.facebook.com"
}

"Condition": {"StringEquals":
{"graph.facebook.com:app_id": "
<app-id>"}}

Google "Principal":
{"Federated":"accounts.google.com

"Condition": {"StringEquals":
{"accounts.google.com:aud": "

"} <app-id>"}}

Cognito "Principal":
{"Federated":"cognito-
identity.amazonaws.com"}

"Condition": {"StringEquals":
{"cognito-
identity.amazonaws.com:aud": "
<app-id>"}}

Custom OIDC
provider

"Principal":
{"Federated":"arn:aws:iam::
<account-id>:oidc-
provider/<provider-url>"}

"Condition": {"StringEquals":
{"<provider-url>:aud": "<app-
id>"}}

Table 2.1: Common OIDC principals and condition keys for creating trust policy

The IAM role permissions policy could also be tailored to restrict access to
the federated identities with policy variables. The available policy variables
for the well-known web identity providers are given as follows:

Amazon: "www.amazon.com:user_id"
Facebook: "graph.facebook.com:id"
Google: "accounts.google.com:sub"
Cognito: "cognito-identity.amazonaws.com:sub"

Let's look at an example around how to use these policy variables in the
permissions policy of the IAM role. We assume that the access needs to be
provided to a Google federated user to list the contents of a folder in a S3
bucket that belongs to the user. The policy might look like the following:

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Action": "s3:ListBucket",

"Resource": ["arn:aws:s3:::bpb479-bucket"]

"Condition": {

"StringLike": {

"s3:prefix": ["contents/${accounts.google.com:sub}/*"]

}

}

}]

}

Now that we have setup the trust between the AWS and OIDC provider and
have looked at the creation of the IAM role that will be assumed by the
federated identities, let's turn our attention to the interaction between the
application, identity provider, and AWS service provider. Figure 2.15 shows
how the application authenticates the user against a web identity provider
(Amazon in the diagram) and gets an OAuth2.0 access token or OIDC Id
token in return. Subsequently, this token, along with the IAM role ARN and
other parameters are passed in the Amazon STS
AssumeRoleWithWebIdentity API call. STS validates the request and sends
the short-term AWS credentials to the application. The application can now
use these credentials to access the AWS resources (S3 bucket in the
diagram). Look at Figure 2.15 as follows:

Figure 2.15: Interaction for web identity federation

AssumeRoleWithWebIdentity
The applications will have to call Amazon STS
AssumeRoleWithWebIdentity API on behalf of the federated identities to get
the AWS scoped short-term credentials, in order to access the AWS
resources. The following needs to be passed to this API call:

RoleArn: ARN of the IAM role that the application wishes to assume.
RoleSessionName: Identifier for the assumed role session. The
temporary credentials received in the response will be associated with
this identifier.
WebIdentityToken: OAuth2.0 access token or OIDC Id token that is
received from the web identity provider once the user is authenticated.
ProviderId: Fully qualified host component of the identity provider's
domain name like www.amazon.com or graph.facebook.com.
Optionally, the session duration and session policy could also be
passed.

In response, along with the other parameters, Amazon STS returns AWS
scoped credentials (combination of AccessKeyId, SecretAccessKey, and
"SessionToken"), which then could be used by the application to access the
resources in the AWS account as defined by the assumed role's permission
policy.

Web Identity Federation with Cognito
AWS recommends using Cognito for the web identity federation instead of
using the AssumeRoleWithWebIdentity API call. This is so because,
Cognito supports anonymous users, data synchronization, and MFA, and
has an optimized flow. We will study this detailed enhanced flow in
Chapter 5: Application Security under the section AuthN/AuthZ with
Amazon Cognito / Identity Pool/ Authentication.
Essentially, the mobile or web application can integrate with a web identity
provider to authenticate the user and then call Cognito API to exchange the
ID token received from the identity provider for the Cognito token. The
application then calls another Cognito API and passes the Cognito token to
fetch the AWS scoped credentials (note that, the application does not
integrate with Amazon STS directly). Once the AWS credentials are
received, the application can then access the AWS resources.
In this interaction, Cognito does a lot of undifferentiated heavy lifting
which includes the verification of the ID token with the identity provider,
calling Amazon STS API to fetch the short-term AWS credentials, etc.

http://www.amazon.com/
http://graph.facebook.com/

AWS Directory Service
Active Directory is a popular directory service developed by Microsoft and
is widely used across enterprises. The servers running Microsoft Active
Directory (AD) are called domain controllers and these servers can
authenticate and authorize the associated users, machines, and other objects.
The objects in AD are organized as trees and a group of trees is called a
forest.
AWS Directory Service is a managed service that can alleviate the
challenges of managing an AD installation with respect to the infrastructure
management, replication, patching, etc. AWS Directory Service supports
the following directory types for the AWS services, AD-aware, or LDAP-
aware workloads running on AWS to integrate with Active Directory.

AWS Directory Service for Microsoft AD: This is a managed service
offering from AWS that is powered by the actual Microsoft Windows
Server Active Directory. It helps to migrate a wide range of AD-aware
applications to the AWS cloud. It supports the integration with
numerous AD-aware applications, including the AWS managed
services like Amazon WorkSpaces, Amazon QuickSight, Amazon
Relational Database Service (RDS) for MS SQL Server, etc. AWS
Directory Service for Microsoft AD can be used in the standalone
mode or could be joined to the on-premise AD via a forest trust over
an AWS Direct Connect or VPN connection. Note that, in a forest
trust, the users are not replicated; there exists a trust relationship (one-
way or two-way) between the on-premise AD and the AWS Directory
Service for MS AD on AWS.

TIP: The direction of the forest trust and that of the resource
access, works in opposite directions. For example, if domain X
trusts domain Y, then Y can access the resources registered with
domain X (not the other way round).

AD Connector: Directory gateway or proxy essentially provides easy
integration of the cloud-based application to the on-premise AD. The
users are managed in the on-premise AD. Thus, the AD-aware
workloads and services (like AWS Workspaces, AWS QuickSight,
Amazon EC2 instances with Windows Server) can take advantage of

connecting to the existing on-premise AD for the authentication and
authorization needs. AD Connector also allows the users to access
AWS Management Console and could be used to enable MFA by
connecting to the existing RADIUS based MFA infrastructure. AD
Connector is not compatible with Amazon RDS SQL Server.
Simple AD: Simple AD is a standalone, AD-compatible (powered by
Samba 4) managed directory service on AWS. Simple AD does not
support trust relationships, MFA, and other advanced AD features.
However, this is a simple and cost-effective AD solution on AWS, for
smaller organizations that need basic AD features.

AWS Single Sign On (SSO)
The AWS Single Sign On or SSO service provides a centralized solution for
creating or connecting the workforce identities from Microsoft AD or a
standard identity provider. It helps to centrally manage the permissions
across multiple accounts in an AWS Organization (optionally) and third-
party business applications that support SAML 2.0. We need to understand
that the identities could be created solely in AWS SSO, or could be
federated to an on-premise AD (leveraging AD Connector), or Standalone
AWS Directory Service for MS AD or AWS Directory Service for MS AD
with a two-way forest trust setup with the on-premise AD. With AWS SSO,
the users could have access to several AWS services as well as the many
business applications. The following figure 2.16 shows the interaction
between the application, AWS SSO and AWS resources as follows:

Figure 2.16: Interaction with AWS SSO

Amazon S3 ACL
AWS recommends the use of the IAM policies and bucket policies to
control access to the S3 buckets and objects. Amazon S3 ACL happens to
be a legacy access control mechanism. ACL is a sub-resource attached to
every bucket or object. Essentially, an ACL defines which AWS accounts or
groups are granted access and the type of access they have (READ, WRITE,
FULL_CONTROL, etc.).

Amazon S3 Canned ACLs
Canned ACLs are a set of predefined grants. Each canned ACL has a
predefined set of grantees and permissions associated with it. When a
bucket or an object gets created, Amazon S3, by default, grants the resource
owner a full control over these resources. The situation becomes a little
tricky when the cross-account role is used to create an object in a bucket. In
such a scenario, the object owner is the account that created the object. This
means, the bucket owner will not have access to the particular object inside
the bucket, by default.
The following are some of the significant canned ACLs:

private: Owner gets FULL_CONTROL. No one else has access rights.
This is the default ACL. Applies to both bucket and object.

public-read: Owner gets FULL_CONTROL and AllUsers (predefined S3
group) group gets READ access. Applies to both bucket and object.
authenticated-read: Owner gets FULL_CONTROL and
AuthenticatedUsers (predefined S3 group) group gets READ access.
Applies to both bucket and object.
bucket-owner-read: Object owner gets FULL_CONTROL. Bucket owner
gets READ access. Applies only to object.
bucket-owner-full-control: Both, the object owner as well as the
bucket owner gets FULL_CONTROL over the object. Applies only to
object.

Canned ACLs can be specified when copying an object to a bucket. The
following is the AWS CLI command to assign canned ACL (bucket-
owner-full) to an object being copied to the S3 bucket named "bpb479-
bucket":

$ aws s3 cp ./contents.txt s3://bpb479-bucket/ --acl bucket-
owner-full-control

AWS tools for IAM
AWS provides targeted tools to simplify role creation, policy governance,
and continuous adherence to the principle of least privilege.

Visual editor for policies
When starting out with the IAM policies, it's easier to use the visual editor
to create the custom policies. The editor is available under the Create
policy page in the IAM console. The editor helps to select the services,
actions, resources, and conditions easily, and then one can also take a look
at the generated JSON policy. Figure 2.17 shows how the editor can
simplify the creation of a policy, as follows:

Figure 2.17: Policy visual editor

Access advisor
The AWS IAM access advisor can be used as a governance tool to
determine the services that have not been accessed by the identities based
on the Last Accessed information and the permissions granted to them.
This may help setup the permission guardrails using Service Control
Policies (SCP) which can then restrict the access to such services at an
AWS Organization or Organizational Unit (OU) level. Note that, access
advisor could also be used outside the scope of an AWS Organization and
can help to refine the permissions assigned to the identities and better
adhere to the principle of least privilege. The tracking period for the service
information in the IAM console is the last 400 days. The following
permissions will be required to be granted in order to check the IAM’s last
accessed information:

iam:GenerateServiceLastAccessedDetails

iam:Get*

iam:List*

To see access advisor at work, we need to visit the IAM console, and for
any particular user, group, or role, we have to click on the Access Advisor
tab in the Summary page. Figure 2.18 shows the Access Advisor related
findings for a user named admin1, as follows:

Figure 2.18: Access Advisor related findings for a user from IAM Console

The Last accessed column provides a good idea around which services
were accessed by the user within the tracking period. The Policies
granting permissions column shows the name of the policy through
which the access to the service was granted.

Access analyzer
AWS IAM Access Analyzer acts as a guide towards the continuous process
of implementing the principle of least privilege and can be accessed from
the IAM console. It helps to generate the fine-grained policies based on the
access activity captured in the logs. It also implements the policy validation
checks. These validations can help in identifying the resources in our
accounts and organization that are shared with the external parties. Policy
checks can produce findings that includes security warnings, errors, general
warnings, and other suggestions for the policies. Access Analyzer can also
help in removing the unused IAM entities based on the "last-used"
timestamp for the roles and access keys, which may otherwise pose a
security threat. At the time of writing this chapter, Access Analyzer could
analyze the following resource types:

Amazon S3 buckets
AWS IAM roles
AWS Key Management Service key
AWS Lambda functions
Amazon Simple Queue Service queues
AWS Secrets Manager secrets

Conclusion
AWS Identity and Access Management is a fundamental security service. A
good understanding of this service and its features, and leveraging it
properly helps keep the AWS account and resources within it, safe. AWS
IAM will be utilized time and again in the upcoming chapters, and thus, a
working knowledge of AWS IAM will surely help in grasping the advanced
service level concepts.
In the next chapter, we will delve into the depths of infrastructure security,
which will establish the foundation of creating a secure AWS application
ecosystem.

CHAPTER 3
Infrastructure Security

Introduction
The importance of infrastructure security is paramount in public cloud. As part
of the shared responsibility model, AWS manages the security of AWS Global
Infrastructure, which provides the necessary backbone for hosting the highly
scalable, reliable, and resilient AWS services. This backbone and AWS
services provide several controls to fine-tune the security of the infrastructure
components and cloud resources that we provision in AWS. This chapter will
cover some of the available AWS services and their security features, which
can help us improve the infrastructure security posture.

Structure
In this chapter, we will cover the following topics:

AWS global infrastructure
Securing networks with Virtual Private Cloud
Patch management
Secure SSH and RDP session management
IP filtering
Vulnerability assessment
Distributed Denial of Service and AWS Shield

Objectives
The objective of this chapter is to introduce the techniques and strategies for
securing the customer's infrastructure components on AWS Cloud. We will
learn how to secure the Virtual Private Clouds and how to configure the
associated network components with security in mind. The chapter will also
help in understanding how to safely perform patching and session management
for privileged access. We will learn about the various strategies to apply IP

filtering and perform vulnerability assessment of the EC2 instances and
container images. Finally, we will take a closer look at safeguarding the
infrastructure elements and services deployed on AWS, from the Distributed
Denial of Service (DDoS) attacks.

AWS Global Infrastructure
AWS Global Infrastructure is an extensive, secure, and reliable network of
AWS data centers, hardware, appliances, operational software, and IT
networks. It has a global footprint and is comprised of the following entities:

Region: A region is defined as a geographical area with a cluster of data
centers featuring latency optimizations and cost minimizations. Regions
are completely isolated from each other, and the region-to-region
communication happens over the web.
Availability zone: An availability zone (AZ) is one or more discrete
data centers in a specific region. AZs are engineered to be isolated by a
fast low latency, high throughput, and highly redundant networking. They
also have redundant power sources. Multiple AZs are used in a highly
available, fault tolerant design to gracefully handle a disaster amounting
to an AZ failure.
Edge network: Edge networks offer low latency and high throughput
network connectivity. On one hand, they are peered with the telecom
providers globally, and on the other hand, they are connected to the
nearest AWS region through the AWS network backbone. The global
edge network is a collection of points of presence (PoP) that includes
edge locations and regional edge caches to deliver fast and low latency
contents to the end users. Amazon CloudFront (a content delivery
network operated by AWS) leverages the global edge network to serve
static and dynamic contents. The requests for content are automatically
routed to the nearest edge location.

As per shared responsibility model, the security of the AWS global
infrastructure lies with AWS. AWS employs state-of-the-art physical and
environmental security controls and processes to safeguard its globally
distributed infrastructure. This includes restricted perimeter access and
building ingress point access to the AWS facilities and data centers,
professional physical security staff, video surveillance, intrusion detection
systems, multi-factor authentication for authorized personnel, etc. In addition,

fire detection and suppression systems, fully redundant power supply,
temperature, and other climate control features are installed in the AWS data
centers to minimize the risk of outages. AWS also takes care of instance
isolation at the hypervisor level, memory isolation by allocating pre-scrubbed
memory to instances, and disk isolation by scrubbing the disks right before
they are reused. All these and more helps AWS to provide highly available,
secure, and fault tolerant cloud services to the customers around the globe.
Now, let's take a closer look into securing our AWS accounts and resources
there-in. As we will see in this chapter, AWS provides several services that can
help us secure our AWS cloud-based networks, instances, and services.

Securing networks with Virtual Private Cloud
Amazon Virtual Private Cloud web service allows us to provision our own
logically isolated section of the AWS cloud for our resources. VPCs are based
on software defined networking (SDN). The configuration of a VPC depends
upon several factors like which users or systems will access the resources
within the VPC, from where they will access the resources, etc.
We will not get into the details of each of the fundamental network elements,
and for this book, we will assume that the readers have a working knowledge
of these elements, so that we can focus on the security aspects of Amazon
VPC. Let us take a quick look at the components involved in the creation of a
functional VPC as follows:

Virtual Private Cloud (VPC): A dedicated regional virtual network for
our AWS account. A VPC is associated with a range of IP addresses,
designated by one or more Classless Inter-Domain Routing (CIDR)
blocks.
Subnet: A range of IP address associated with the VPC and tied to an
AZ. If a subnet has a route to the Internet gateway, it's called a public
subnet. On the other hand, if a subnet does not have a route to the
Internet gateway, it’s called a private subnet. A special case of a private
subnet is a VPN-only subnet in which there is no route to the Internet
gateway; however, traffic is routed to a virtual private gateway for site-
to-site virtual private connection (VPN).
Route table: A set of routing rules to define how a network traffic is
routed to a destination. The route tables are attached with one or more
subnets.

Internet gateway: A gateway that, when attached to a subnet of a VPC,
enables the communication between the resources in the subnet and the
public Internet.
NAT device: A NAT device allows the instances in the private subnets to
connect to the Internet. We will cover the NAT devices in detail, in a
subsequent section.

Hybrid networks
Often, there are requirements to connect the VPC with remote networks in a
fault tolerant and secure manner. AWS provides various VPN connectivity
options and AWS Direct Connect to achieve this type of hybrid networking.

VPN connectivity
A VPN connection can help establish network connectivity between VPCs and
other remote networks (like on-premises or co-location networks). The VPN
connections are established over the public Internet; however, the connections
can still leverage private IP addresses. AWS offers various VPN connectivity
options, which are mentioned as follows:

AWS Site-to-Site VPN: With this option, we can create a site-to-site
IPSec (Internet Protocol Security) VPN connection between a remote
network and our VPC. Site-to-Site VPN connection offers two VPN
tunnels for failover support, between a VPN concentrator known as
Virtual Private Gateway or a transit gateway on the AWS side and a
customer gateway (representing a VPN device) on the remote side. The
necessary changes will have to be made to the route table associated with
the private subnet to route the traffic to the virtual private gateway.
Figure 3.1 shows the schematics of a site-to-site VPN with a virtual
private gateway attached to the VPC, as follows:

Figure 3.1: Site-to-Site VPN Connection with virtual private gateway

Figure 3.2 shows another way to achieve site-to-site VPN, where the
VPN connection is specified as an attachment on the transit gateway. We
will learn more about transit gateways in a subsequent section. Refer to
Figure 3.2 as follows:

Figure 3.2: Site-to-Site VPN Connection with transit gateway

With IPSec VPN tunnels, data in transit can be encrypted with AES128
or AES256 ciphers and the redundancy created by the two tunnels makes
the connection resilient.
AWS Client VPN: AWS Client VPN enables us to establish a client-to-
site VPN connection. AWS Client VPN can help us configure an
endpoint to which OpenVPN-based VPN clients can connect from any
location over a secure TLS VPN session. Once the client has established
a VPN session, it can access the resources in the VPC in which the
associated subnet exists. In addition, the client can also access the other
AWS resources, like resources in a peered VPC, a VPN connection to a
remote network, or the Internet via an Internet gateway, as shown in

Figure 3.3. Appropriate routes and authorization rules have to be in place
for such access. Refer to Figure 3.3 as follows:

Figure 3.3: Client-to-site VPN connectivity with AWS Client VPN

VPN Clients can be authenticated with certificate based mutual
authentication or user-based authentication (based on Active Directory
or SAML based federation). We can also use a combination of mutual
authentication plus AD authentication or mutual authentication plus
federated authentication. Client VPN supports two types of authorization
with security groups and network-based authorization. Security groups
can be associated with the Client VPN endpoint to authorize the traffic
and the network-based authorization is implemented with the
authorization rules. Each network can be configured with the AD group
or SAML-based IdP group to authorize access. In the absence of AD or
SAML based federated authentication, we can specify the ingress rules
that grants access to the VPN clients.
AWS VPN CloudHub: We can use AWS as a VPN connection hub in
scenarios where we have to connect multiple remote sites securely via the
VPN connection. We have to establish the AWS site-to-site VPN
connectivity with each remote network. This enables the remote networks
to connect as well as our VPC. The VPN CloudHub architecture is shown

in Figure 3.4 where the green lines represent VPN traffic between the
remote sites over the site-to-site VPN connections, as follows:

Figure 3.4: AWS VPN CloudHub architecture

VPN appliance: A third party software VPN appliance could be installed
on the EC2 instance which can then provide private connectivity to the
remote networks over the public Internet. This option is not provided or
maintained by AWS, and we will have to be responsible for the high
availability and fault tolerance of this setup.

AWS Direct Connect
AWS Direct Connect helps to create a dedicated private connection over the
standard Ethernet fiber-optic cable, between the remote networks and AWS.
AWS Direct Connect features stable, high bandwidth (ranging from 50Mbps to
100Gbps) and low latency connections. One end of the cable is connected to
the on-premises router and the other to the nearest AWS Direct Connect router
in the AWS Direct Connect location. With AWS Direct Connect, we can create
public virtual interfaces to connect directly with the public AWS services (like

Amazon S3) and private virtual interfaces to connect with resources in our
VPCs from the on-premises network.
With AWS Direct Connect, there are two options to protect the data in transit,
which are as follows:

AWS Direct Connect can be combined with AWS Site-to-Site VPN to
create an IPSec encrypted connection with any AWS Direct Connect line.
For the 10 Gbps and 100 Gbps connections, AWS Direct Connect offers
MACsec (Layer-2 protocol that relies on AES-GCM-128-bit cipher)
point-to-point encryption at selected AWS Direct Connect locations.

With the understanding of the basic networking constructs in place, let us now
dive deeper and look at the various AWS services and AWS recommended
strategies available to secure our VPCs and the resources in it.

A quick note on VPC based AWS CLI commands
Most of the VPC related activities can be done by setting up a user that has an
AWS managed permission policy called NetworkAdministrator or a custom
permission policy, attached to it. Subsequently, we can create an AWS CLI
profile with this user's credentials and fire away the AWS CLI commands.
Needless to say, we can also use the more powerful AdministratorAccess
policy; however that setup might not follow the principle of least privilege.
We must also note that the VPC related features are grouped inside the EC2
command in AWS CLI. For example, if we want to create a VPC with CIDR
block 10.0.0.0/16 in ap-south-1 region leveraging AWS CLI, we can use the
following command:

$ aws ec2 create-vpc --cidr-block 10.0.0.0/16 --region ap-south-1

As another example, if we want to create an Internet Gateway and attach the
same with our VPC (identified by vpc-id), we can use the commands
mentioned here. The first command creates an Internet Gateway and publishes
the ID of the new created Internet Gateway as the output. This must be
extracted and used in the second command that attaches this newly created
Internet Gateway with an existing VPC. Look at the following command:

$ aws ec2 create-internet-gateway

The create-internet-gateway command will generate an output that looks like
the following:

{

"InternetGateway": {

"Attachments": [],

"InternetGatewayId": "igw-06115e77bf9833364",

"OwnerId": "679359112763",

"Tags": []

}

}

As mentioned earlier, we have to extract the Internet Gateway ID from this
output and execute the attach-internet-gateway command to attach this
gateway to the VPC. Here’s the command that attaches the Internet Gateway to
the VPC:

$ aws ec2 attach-internet-gateway --internet-gateway-id <igw-id>
\
--vpc-id <vpc-id>

Inter VPC private communication
There can be situations where inter VPC communication needs to be kept
private for security reasons. A private communication between VPCs is
possible via VPC Peering and transit gateway. These enable the VPCs to
communicate with each other over RFC 1918 address space or private IPs.
Transit gateway takes this one step further and provides a transit hub that
supports the private connections between VPCs and the on-premise networks.

VPC peering
A VPC peering connection is a private networking connection between two
VPCs using internal AWS network. Instances in VPC can communicate as if
they were in the same network by using their private IPs (RFC 1918 address
space). A VPC peering connection can be set up with another VPC in the same
AWS Region that belongs to the same AWS account, a different AWS account,
or a VPC in a different AWS Region (cross region VPC peering). AWS VPC
peering connection has no bandwidth bottleneck and no single point of failure.
Figure 3.5 shows how a VPC peering works, as follows:

Figure 3.5: Schematic diagram of a VPC peering

VPC-A and VPC-B must have non-overlapping CIDR ranges. With a peering
setup between these two, an EC2 instance in a private subnet of VPC-A can
communicate with another EC2 instance in a private subnet of VPC-B, over
private IP addresses.
Certain considerations need to be taken into account before setting out to
create a VPC peering connection, as follows:

The peered VPCs must not have overlapping CIDR blocks.
VPC peering connection is not transitive, which means, each pair of
VPCs will have to be peered separately.
VPC peering does not support edge-to-edge routing, which means,
instances in one VPC cannot leverage the existing Internet gateway,
VPN, or Direct Connect connection, NAT gateway and Gateway VPC
endpoint (described in a subsequent section), in a peered VPC.
It requires route tables in each VPC's subnet to be updated for the
instances to communicate.
Security groups can be referenced from a peered VPC.
VPC peering uses the longest prefix match to select the most specific
route.
With a VPC peering, all instances in the two peered VPCs can essentially
communicate with each other, and in certain scenarios, this might not be
the optimal solution considering the network security.

To create a VPC peering connection from VPC Console, we have to select
Peering Connections under VIRTUAL PRIVATE CLOUD in the left navigation
panel, and in the Peering Connections page, click on the Create peering
connection button. In the Create peering connection page (shown in

Figure 3.6), we have to select the local VPC (or requester) and select the other
VPC (accepter) and click on the Create peering connection button. As
already stated, the accepter VPC could be in the same AWS account or in a
different AWS account in the same AWS Region as the requester or in a
different AWS Region. Refer Figure 3.6 as follows:

Figure 3.6: Setting up a peering connection from VPC Console

Transit gateway
Managing the VPC peering connections can become very complex as the
network grows primarily due to the peering mesh that gets created. In such
complex networking scenarios, transit gateway can prove beneficial. A transit
gateway is a regional network transit hub that can be used to interconnect the
VPCs and the on-premises networks. Moreover, the transit gateway can be
shared across multiple accounts using AWS Resource Access Manager

(RAM) and can support cross region peering. Transit gateway supports a hub-
spoke connection model, as shown in Figure 3.7, as follows:

Figure 3.7: Hub-and-spoke connection model of a transit gateway

Figure 3.7 shows the various types of attachments that can be attached with a
transit gateway. These include one or more VPCs, an AWS Direct Connect
gateway, a peering connection with another transit gateway, a VPN connection
to a transit gateway, etc. Each attachment can be associated with exactly one
route table. A route table, however, can be associated with zero or many
attachments. Transit gateway has a default route table and supports additional
route tables as well. A route table can include both, the dynamic as well as the
static routes, and a route table entry can have any transit gateway attachment as
the target.
Transit gateway enables us to design complex network architectures like
central NAT gateway or central Internet gateway, where there is an egress VPC
which is connected to a transit gateway and the traffic from the other VPCs
must pass through the transit gateway into the egress VPC and then

communicate with the Internet. However, these network architectures are
outside the scope of this book.

Private communication with AWS services
While VPCs can communicate privately with each other via a VPC peering or
transit gateway, there are often security requirements to connect privately with
the AWS services from within a VPC. A VPC endpoint enables us to privately
connect our VPC with the supported AWS services and VPC endpoint services
(powered by AWS PrivateLink, described in a subsequent section), without
requiring the traffic to leave the Amazon network. That is, there is no need for
the public IP addresses, Internet gateway, NAT device, VPN connection or
AWS Direct Connect. Essentially, the VPC endpoints are virtual devices that
are horizontally scalable and highly available and comes primarily in two
forms – gateway type endpoints and interface type endpoints. There is another
type of VPC endpoint known as Gateway Load Balancer endpoints that are
similar to the interface endpoints and serves as an entry point to intercept the
traffic and route it to a service that has been configured using a Gateway Load
Balancer. We will, however, focus our attention on the first two types.

Gateway endpoints
Gateway endpoints are available for Amazon S3 and Amazon DynamoDB
only. A gateway endpoint is defined as a route table target for any traffic
destined for the supported AWS services. Such traffic is routed through
Amazon's private network. Gateway endpoints do not impose any additional
costs. However, they do have certain limitations that should be considered.
Some of the important limitations are as follows:

Gateway endpoints are only supported within the same region. This
means, the endpoint and the service must be in the same region.
Gateway endpoints only support IPv4.
Gateway endpoint connections cannot extend out of a VPC. This means,
resources on the other end of a VPN or AWS Direct Connect connection,
VPC peering, or Transit gateway cannot use the endpoint to integrate
with the endpoint service.
DNS resolution must be turned on in the VPC, so that the DNS requests
to the supported AWS services are resolved correctly.

An extra layer of protection for a gateway endpoint is to attach a custom
endpoint policy with the endpoint to control the access from the endpoint to the
endpoint service. An endpoint policy is a resource-based IAM policy (refer to
Chapter 2: Identity and Access Management) and does not override the
identity policies or the service-specific policies. The default endpoint policy
provides full access and looks like the following:

{
"Statement": [
{
"Action": "*",
"Effect": "Allow",
"Resource": "*",
"Principal": "*"

}
]

}

To create a gateway endpoint for Amazon S3, we can use the following AWS
CLI v2 command. The command attempts to create a Gateway endpoint in the
ap-south-1 region, for a given VPC ID and route table ID. To attach a custom
endpoint policy document stored in a file named policy.json, we can use the
policy-document option which can then point to that policy file (for example,
--policy-document file://policy.json). Look at the following command:

$ aws ec2 create-vpc-endpoint --vpc-id <vpc-id> \
--vpc-endpoint-type Gateway --service-name com.amazonaws.ap-
south-1.s3 \
--route-table-ids <route-table-id> \

Note that, to create a gateway endpoint for DynamoDB gateway endpoint
service, only the service name will have to be changed to com.amazonaws.ap-
south-1.dynamodb.
Amazon VPC Management Console provides a very intuitive interface for
creating the endpoints and could prove to be very helpful when starting out
with the VPC endpoints. To create a VPC endpoint from Management
Console, go to VPC Console and select Endpoints under VIRTUAL PRIVATE
CLOUD, from the left navigation panel. In the endpoints summary page, click on
the Create Endpoint button. This opens the Create Endpoint page, as shown
in Figure 3.8 (partially), as follows:

Figure 3.8: Create a VPC endpoint from VPC Console

As we can see, when Service Category is chosen as AWS services, the
Service Name table shows both the Gateway as well as the Interface endpoint
services. In Figure 3.8, we have filtered the table for S3 and have selected the
S3 Gateway endpoint service. This graphical interface allows us to select the
route table, as well as the endpoint policy document to be attached to the
endpoint.
When a gateway endpoint is created, it essentially creates an AWS managed
prefix list (a set of IPv4 or IPv6 address ranges) that corresponds to the
gateway endpoint service in that region. The corresponding prefix list
identifier takes the format pl-xxxxxxx. This prefix list ID is then added to the
route table as a destination, with a target pointing to the VPC endpoint. Refer
to Figure 3.9 for a representative route table entry, as follows:

Figure 3.9: A route table entry with a prefix list ID as the destination and VPC endpoint as target

Interface endpoints

An interface endpoint is an elastic network interface (ENI) with a private IP
address, and it allows us to connect with the services powered by AWS
PrivateLink. The private IP address belongs to the range of an IP address of a
selected subnet and serves as an entry point for the traffic that are destined for
the supported AWS services, service hosted by other AWS customer and
partners in their VPCs, and supported AWS Marketplace Partner services.
AWS Services like Amazon S3, AWS Lambda, Amazon API Gateway,
Amazon EC2, Amazon ECR, Amazon ECS, Amazon RDS, AWS Secrets
Manager etc., supports this type of VPC endpoint for private connectivity.
Interface endpoints are different from the gateway endpoints, in that they are
billed and powered by AWS PrivateLink and leverages ENI. Additionally, an
interface endpoint connection can extend out of a VPC. This means, the
interface endpoint can be used by the resources on the other end of the VPN or
AWS Direct Connect connections, VPC peering or transit gateway to
communicate with the supported AWS services. Some of the limitations
associated with interface endpoint are mentioned as follows:

Only one subnet per AZ could be selected for each interface endpoint.
Each interface endpoint, by default, supports a bandwidth of up to 10
Gbps per AZ and can burst up to 40 Gbps.
Interface endpoints are supported within the same region only. This
means, the endpoint and the service must be in the same region.
Interface endpoints support IPv4 traffic only and they support TCP based
traffic.

The security of an interface endpoint can be improved in the following two
ways:

1. Attach a custom endpoint policy with the endpoint to control the access
from the endpoint to the interface endpoint service (similar to a gateway
endpoint).

2. Create and associate a security group with the ENI corresponding to the
interface endpoint, to selectively allow the traffic through the ENI.

The following AWS CLI v2 command can be used to create an interface
endpoint for a representative AWS Service like Secrets Manager. The
command enables us to connect with the Secrets Manager from our VPC,
directly through a private endpoint. Note that, the private DNS is enabled by
default for an interface endpoint; however, the flag (private-dns-enabled)

has been explicitly used for clarity. Here’s the AWS CLI v2 command to create
an Interface endpoint:

$ aws ec2 create-vpc-endpoint --vpc-id <vpc-id> \
--vpc-endpoint-type Interface \
--service-name com.amazonaws.ap-south-1.secretsmanager \
--subnet-ids <subnet-id-1> <subnet-id-2> \

--security-group-id <security-group-id>

--private-dns-enabled

The output of the preceding command includes the DNS names that we can
use to connect to the new interface endpoint. A portion of the sample output is
given as follows:

{

"VpcEndpoint": {

…

"DnsEntries": [

{

"DnsName": "vpce-053972fdb75d5e757-

28pg7i60.secretsmanager.ap-south-1.vpce.amazonaws.com",

"HostedZoneId": "Z2KVTB3ZLFM7JR"

},

{

"DnsName": "vpce-053972fdb75d5e757-28pg7i60-ap-south-

1b.secretsmanager.ap-south-1.vpce.amazonaws.com",

"HostedZoneId": "Z2KVTB3ZLFM7JR"

},

{

"DnsName": "vpce-053972fdb85d5e757-28pg7i59-ap-south-

1a.secretsmanager.ap-south-1.vpce.amazonaws.com",

"HostedZoneId": "Z2KVTB3ZLFM7JR"

},

{

"DnsName": "secretsmanager.ap-south-1.amazonaws.com",

"HostedZoneId": "ZONEIDPENDING"

}

…

}

By default, when a VPC private endpoint is created, a private hosted zone is
automatically associated with the VPC that contains a record set, enabling us
to privately invoke a supported AWS service, while still making requests to the
service's default public endpoint DNS name. To use this feature, we must
remember to enable the DNS resolution and DNS hostnames attributes in the
VPC. With these settings in place, we can use the standard Secrets Manager
endpoint DNS name for the region (like secretsmanager.ap-south-
1.amazonaws.com). It will automatically resolve to the correct endpoint within
the region VPC by leveraging the private DNS.
In cases where we don't enable the private DNS names, we can still access the
Secrets Manager endpoint privately by using the fully qualified DNS name
(like vpce-053972fdb75d5e757-28pg7i60.secretsmanager.ap-south-
1.vpce.amazonaws.com as shown in the DNS entries output of create-vpc-
endpoint command).

A note on AWS PrivateLink
AWS PrivateLink is a highly available and scalable technology that helps
establish a private connectivity between VPC and the supported AWS services,
VPC endpoint services hosted by other AWS accounts, and supported AWS
Marketplace partner services. The PrivateLink traffic is never exposed to the
Internet and is thus a comparatively secure way to access the AWS services
and other VPC endpoint services. To leverage AWS PrivateLink, we must
create a VPC endpoint for a chosen service. This essentially creates an ENI
with a private IP address that acts as the entry point for the traffic that is
destined for the service.

TIP: The following link provides the list of AWS services that integrate
with AWS PrivateLink:
https://docs.aws.amazon.com/vpc/latest/privatelink/integrated-services-
vpce-list.html

Figure 3.10 shows a simplified view of how the applications in a private
subnet can access the representative AWS service (Amazon S3) leveraging the
VPC interface endpoint, which is powered by AWS PrivateLink, as follows:

https://docs.aws.amazon.com/vpc/latest/privatelink/integrated-services-vpce-list.html

Figure 3.10: Schematic of how VPC interface endpoint works with AWS PrivateLink to achieve private
connectivity

In case of custom endpoint services like a SaaS application provider deployed
on AWS (endpoint service provider), the endpoint service will have to expose a
network load balancer which will be on the other side of AWS PrivateLink and
will distribute the traffic coming from multiple consumer VPC interface
endpoints to the provider application nodes, as shown in Figure 3.11, as
follows:

Figure 3.11: Schematic of how a VPC Endpoint Service (here a SaaS provider) works

NAT devices and egress-only Internet gateways
A Network Address Translation (NAT) device allows the instances in the
private subnets to connect to the Internet, other VPCs, or the on-premises

network, without the risk of receiving unsolicited inbound connection requests.
Essentially, the source IPv4 address of the instances is replaced with the
address of the NAT device during an outbound connection. When the response
traffic is sent to the respective instances, the NAT device translates the
addresses back to the original source IPv4 addresses. When it comes to using
the NAT devices, we have two choices – use a managed NAT device (NAT
gateway) or use our own NAT device on an EC2 instance. The NAT gateways
are an obvious better choice owing to their better scalability, bandwidth, and
less operational headache. However, we must note that the NAT devices are
not supported for the IPv6 traffic, and we can use egress-only Internet
gateways for this purpose.

NAT gateways
NAT gateway is a highly scalable, redundant, AWS managed NAT device.
NAT gateways come in two connectivity types – public and private. With the
public connectivity, the instances in the private subnets can connect to the
Internet via a public NAT gateway (but cannot receive unsolicited VPC bound
connections from the Internet). A public NAT gateway is created in a public
subnet and is associated with an elastic IP address (EIP). The traffic from the
instances in the private subnets is routed to the Internet gateway for the VPC.
With the public NAT gateways, the source IP addresses of the instances is
replaced with the EIP of the NAT gateway.
On the other hand, a private NAT gateway is created in a private subnet and
cannot be associated with an EIP or route traffic to the Internet gateway. It can,
however, be used to connect the instances in the private subnets to the other
VPCs or the on-premises network through a transit gateway or virtual private
gateway and still get the benefits of NAT. A private NAT gateway replaces the
private source IP addresses of the instances with the private IP address of the
NAT gateway.
A NAT gateway is created in a specific AZ and is implemented with
redundancy in that AZ. To create a NAT solution that can withstand an AZ
failure, we can create a NAT gateway in each AZ and configure the routing in
such a way that the resources use the NAT gateway in the same AZ.
The following are the AWS CLI v2 commands to create a public and a private
NAT gateway:

Create a public NAT gateway and specify the public subnet ID

and

allocation ID of the EIP to associate with the NAT gateway

$ aws ec2 create-nat-gateway --subnet-id <public-subnet-id> \
--allocation-id <eip-alloc-id>

Create a private NAT gateway and supply the private subnet ID

$ aws ec2 create-nat-gateway --subnet-id <private-subnet-id>

Note that, the NAT gateway ID can be used as targets to create the entries in
the route table in order to route the traffic to the NAT gateway, as shown in
Figure 3.12, as follows:

Figure 3.12: Edit routes in a route table to route traffic to the NAT gateways

NAT instance
NAT instance is basically an EC2 instance in a public subnet which has been
configured to act as a NAT instance. The easiest way to get started with a NAT
instance is to select a community AMI (by searching for NAT) and start an EC2
instance based on that AMI in a public subnet. The NAT instance will have its
own public IP address or an EIP will have to be associated with the instance.
For security reasons, the instance will have to be placed behind an appropriate
security group which will generally allow HTTP/HTTPS traffic. Additionally,
source/destination check will have to be disabled for the NAT instance. By
default, each EC2 instance performs a source/destination check, whereby the
instance must be the source or destination for each traffic that it sends or
receives. However, a NAT instance should be able to send or receive traffic
when it is not the source or destination itself. The following AWS CLI
command can be used to disable the source/destination check:

$ aws ec2 modify-instance-attribute --instance-id=<instance-id> \

--no-source-dest-check

To route the traffic from the private subnets to the NAT instance, we will have
to make changes to the route table associated with the private subnets to target
the NAT instance (identified by the NAT instance ID).
We must note that the NAT AMI is built on the last version of Amazon Linux
(2018.03) and has reached its end of life on 2020-12-31 and as such, will not
receive any regular updates except critical security patches. While we can
create our own AMIs to run NAT, the recommended strategy is to use the NAT
gateways instead. Also, from a design perspective, the challenge with the NAT
instance is that it introduces a single point of failure, unless we explicitly take
appropriate measures to create the redundancy on our own.

Egress-only Internet gateways
Egress-only Internet gateways allow outbound communication over IPv6 from
the instances in our VPC to the Internet and prevents the Internet from
initiating unsolicited IPv6 connections to our instances. Egress-only Internet
gateways are horizontally scaled, redundant, and are highly available VPC
components.

Firewalls
Amazon VPC supports several types of firewalls, that can be deployed on the
perimeter, associated with subnets and even with the instances. We could also
install the host-based firewalls in the EC2 instances; however, that is outside
the scope of this book.

Security groups
A security group is essentially a virtual firewall for the EC2 instances (they are
however, used with the other AWS resources as well, like Elastic Load
Balancers) that can control both the inbound and the outbound traffic to/from
the instances. The security groups are associated with the network interfaces.
In case of the EC2 instances, they are attached with the primary network
interface (eth0), by default.
Let's summarize the important characteristics of security groups, as follows:

Security groups are associated with the EC2 instances or network
interfaces (including elastic network interface or ENI).

Security groups are stateful, which means, if an inbound traffic is allowed
by the inbound rules, then the response to that traffic will be
automatically allowed regardless of the outbound rules. Similarly, if an
outbound traffic is allowed by the outbound rules, then the response to
that traffic will be allowed, regardless of the inbound rules.
Security groups support only "allow" rules and cannot be used to
explicitly "deny" a traffic. As a corollary, if a traffic is not explicitly
allowed, then it will be denied by default, with an implicit deny rule.
Traffic filtering in the security groups is based on protocols, port
numbers, and source/destination as follows:

Commonly used protocols are TCP, UDP, ICMP, or All (to signify
all protocols).
Port numbers can be represented as a single number (value between
0 to 65535) or a port range (like 0-65535).
Source and destination can be represented by a single IPv4 or IPv6
address, or a range of IPv4 or IPv6 address in the CIDR block
notation, or an ID of the prefix list (described in the VPC gateway
endpoints section), or another security group identified by its ID.

When a security group is created, it has no inbound rules by default.
However, it has an outbound rule that allows all the outbound traffic.
Ideally, this must be deleted, and a new restrictive outbound rule should
be created.
In case of an inbound traffic, all the inbound rules are evaluated before
deciding whether to allow the traffic. Similarly, for an outbound traffic,
all the outbound rules are evaluated before deciding whether to allow the
traffic.

The default VPC in each AWS Region is assigned a default security group
named "default." If any instance or network interface is not assigned a security
group explicitly, the default security group of the VPC is assigned to it. If we
look into the inbound and outbound rules of this default security group, we will
notice that it allows all the inbound traffic from the network interfaces and
instances that are assigned to the same security group (identified by the
security group ID), as shown in Figure 3.13, as follows:

Figure 3.13: Default security group's inbound rules

However, the outbound rule is more lenient and allows all the outbound traffic,
as shown in Figure 3.14, as follows:

Figure 3.14: Default security group's outbound rules

While the default security group is a good starting point, we should seriously
consider creating custom security groups which can be fine-tuned for our
specific purposes.
It is simple to create a security group and manage the inbound and outbound
rules by selecting Security Groups under the SECURITY option on the left
navigation panel of the VPC Console (or from the EC2 Console under Network
& Security | Security Groups on the left navigation panel). The readers are
encouraged to perform these actions from the VPC Console on their own.

We can reference other security groups (by their ID) as Source in the
inbound rules and Destination in the outbound rules of a security
group. This is a very powerful feature and is highly recommended.

Now, let's create a custom security group with AWS CLI. We will assume that
this security group allows the inbound HTTPS traffic on port 443 from an ELB

security group (identified by the security group ID) and SSH traffic on port 22
from a particular CIDR range, as follows:

Create a new security group named sg_webservers for an existing
VPC
$ aws ec2 create-security-group --group-name "sg_webservers" \
--description "Web Servers" --vpc-id <vpc-id>

Upon success, this command produces an output that gives the security group
ID. This ID can be used to add the inbound and outbound rules to the security
group. Note that the preceding command automatically creates an outbound
rule that allows all the traffic to any destination (identified by the CIDR range
0.0.0.0/0). A representative output of the create-security-group command is
shown as follows:

{

"GroupId": "sg-0407d3a7564d4efc4"

}

Now, let's add the inbound and outbound rules to the newly created security
group, identified by GroupId in the output of the create-security-group
command as follows:

Add inbound rule that allows HTTPS (TCP) traffic on port 443

from an

existing security group associated with an elastic load

balancer

identified by elb-sg-id

$ aws ec2 authorize-security-group-ingress \

--group-id sg-0407d3a7564d4efc4 \

--protocol tcp \

--port 443 \

--source-group <elb-sg-id>

Add another inbound rule that allows SSH (TCP) traffic on port

22 from a

representative CIDR range

$ aws ec2 authorize-security-group-ingress \

--group-id sg-0407d3a7564d4efc4 \

--protocol tcp \

--port 22 \

--cidr 220.221.222.0/24

Similarly, we can create the outbound rules for the security group with the
authorize-security-group-egress subcommand. Moreover, in order to
remove an inbound or outbound rule from a security group, we can use the
corresponding revoke-security-group-ingress" and "revoke-security-
group-egress subcommands.
Finally, to apply the security group to an EC2 instance (identified by instance
ID), we can use the following command. However, since this involves working
primarily with an EC2 instance, we must use a profile (say ec2.admin) that
corresponds to a user with AmazonEC2FullAccess or similar permissions, as
follows:

$ aws ec2 modify-instance-attribute \

--instance-id <instance-id> \

--groups sg-03d3c28779404d166 --profile ec2.admin

Network Access Control Lists
Network Access Control List, or NACL in short, is yet another fundamental
firewall construct within an Amazon VPC. When used properly, they can filter
the unwanted and malicious traffic at the subnet level very effectively.
NACLs differ from the security groups in many important respects. Let's
summarize the characteristics of a NACL, as follows:

NACLs are associated with subnets in a VPC. Each subnet in a VPC
must be associated with a single NACL. If not explicitly associated with
an NACL, the subnet gets automatically associated with the default
NACL. An NACL however, can be associated with more than one
subnet.
NACLs are stateless, that is, if an inbound traffic is allowed by the
inbound rules, then the response to that particular traffic will have to be
explicitly allowed in the outbound rules. Similarly, if an outbound traffic
is allowed by the outbound rules, then the response to that traffic will
have to be explicitly allowed in the inbound rules.
NACLs support both the "allow" and the "deny" rules and as such can be
used to explicitly "deny" a traffic.
A NACL filters the traffic based on the protocols, port numbers, and
source/destination, as follows:

Commonly used protocols are TCP, UDP, ICMP, SMTP, telnet, etc.

Port numbers can be represented as a single number (value between
0 to 65535) or a port range (like 0-65535).
The source for the inbound rules and destination for the outbound
rules can be represented by the CIDR ranges.

When a custom NACL is created, by default, it denies all the inbound as
well as the outbound traffic, unless the rules are explicitly added to allow
traffic.
A NACL contains a numbered list of rules which are evaluated in order,
starting with the lowest numbered rule (which has the highest priority) to
determine whether the traffic is allowed in or out of the associated
subnets.

Every VPC has a default NACL that allows all the inbound and outbound
traffic. Subnets in a VPC are associated with this default NACL, unless
explicitly associated with a custom NACL. Figure 3.15 shows the inbound
rules of the default NACL in a VPC. NACLs can be accessed from the
Network ACLs option under SECURITY from the left navigation panel in the
VPC Console. Notice that each rule has a corresponding rule number and that
the "allow" rule has a rule number 100 and precedes the default "deny" rule
with * as the rule number which has an underlying value of 32767 with the
lowest priority. As such, the overall effect is that of "allow" for all traffic on all
ports. Refer to Figure 3.15, as follows:

Figure 3.15: Inbound rules of default NACL

Similarly, each rule in the outbound rules (shown in Figure 3.16) of the default
NACL has a rule number. The "allow" rule with rule number 100 takes
precedence when compared with the default "deny" rule and effectively all the
outbound traffic is allowed on all the ports. Refer to Figure 3.16 as follows:

Figure 3.16: Outbound rules of default NACL

For all practical purposes, the default NACL can be used as-is. However, the
"allow-all" strategy is too open and we might have to create custom NACLs
with the inbound/outbound rules. As with the security groups, its fairly simple
to create and manage NACLs from the VPC Console, and in fact, in many
ways, it is similar to the security groups.
Let's use AWS CLI to create a custom NACL and associate it with a VPC
(identified by vpc-id). When a custom NACL is created, a default inbound
and outbound deny rule gets associated with it. In essence, all the inbound and
outbound traffic is denied when a custom NACL is created. We must explicitly
add/update the rules to ensure that it meets our requirements. Here’s the CLI
command to create a NACL:

$ aws ec2 create-network-acl --vpc-id <vpc-id>

The preceding command will produce a representative output as follows: .

{
"NetworkAcl": {
"Associations": [],
"Entries": [
{
"CidrBlock": "0.0.0.0/0",
"Egress": true,
"IcmpTypeCode": {},
"PortRange": {},
"Protocol": "-1",
"RuleAction": "deny",
"RuleNumber": 32767

},
{
"CidrBlock": "0.0.0.0/0",
"Egress": false,

"IcmpTypeCode": {},
"PortRange": {},
"Protocol": "-1",
"RuleAction": "deny",
"RuleNumber": 32767

}
],
"IsDefault": false,
"NetworkAclId": "acl-0e91d5a4ec013caf8",
"Tags": [],
"VpcId": "vpc-029XXXXXXXXXXXXXXXX",
"OwnerId": "123456789111"

}
}

As evident, the output provides details about the default inbound and outbound
deny rules that get created automatically. Each receives the highest rule
number 32767 (with the lowest priority). With the custom NACL created (with
default inbound and outbound rules), let's add an inbound rule to the newly
created NACL that allows the SSH traffic on port 22 from a specific
representative CIDR block. Also, NACL being stateless, we will have to
ensure that the response traffic is explicitly allowed in the outbound rule. To
allow this response, we will essentially allow the outbound TCP traffic on the
port range 1024-65535 (TCP high ports). Note that the protocol number 6
represents TCP. Similarly, UDP is 17 and ICMP is 1 and value -1 is used to
represent All protocols. Here are the commands to add ingress and egress rules
to the NACL:

$ aws ec2 create-network-acl-entry --network-acl-id acl-
0e91d5a4ec013caf8 \
--ingress --rule-number 100 --protocol 6 \
--port-range From=22,To=22 --cidr-block 220.221.222.0/24 \
--rule-action allow

$ aws ec2 create-network-acl-entry --network-acl-id acl-
0e91d5a4ec013caf8 \
--egress --rule-number 100 --protocol 6 \
--port-range From=1024,To=65535 --cidr-block 220.221.222.0/24 \
--rule-action allow

With these rules in place, all the EC2 instances in the associated subnets of this
NACL will receive the inbound SSH traffic on port 22 from a specific CIDR
range. However, the security groups for each of these instances might decide to
disallow such traffic. Since the subnets are, by default, associated with the
default NACL, we can use the replace-network-acl-association
subcommand to replace the existing association of a subnet (identified by the
acl association id), with a new association pertaining to the newly created
NACL (identified by acl-id), as follows:

$ aws ec2 replace-network-acl-association \
--association-id <aclassoc-id> \
--network-acl-id <acl-id>

The existing association IDs can be retrieved from the output of the describe-
network-acls subcommand, shown as follows:

$ aws ec2 describe-network-acls --network-acl-ids <acl-id>

DNS Firewall
Route 53 Resolver DNS Firewall is an AWS managed firewall that enables us
to define the rule groups with the domain name filtering rules. Essentially,
DNS Firewall provides granular level control over the DNS querying by
resources within Amazon VPC. As such, DNS Firewall can be used to block
the DNS queries made for the malicious domains and allow the queries for the
trusted ones. We can create both blocklists and allowlists (stricter option) for
the domains with DNS Firewall.
The first step is to create a domain list. A domain list, as the name suggests, is
a reusable set of domain specifications that can be used in a DNS Firewall rule.
A DNS Firewall rule then becomes part of a DNS Firewall rule group. To
create a domain list, we will have to select the Domain Lists option under DNS
FIREWALL from the left navigation panel in the VPC Console. Then, on the
Domain lists page, we will have to click on the Add domain list button.
This opens the Add domain list page, as shown in Figure 3.17. We must
provide a name for the domain list and specify the set of domain names for the
domain list. Finally, we will click on the Add domain list button which
creates a custom domain list. Refer to Figure 3.17 as follows:

Figure 3.17: Create a custom domain list from VPC Console > DNS Firewall

AWS managed domain lists like AWSManagedDomainsMalwareDomainList and
AWSManagedDomainsBotnetCommandandControl are also made available for
getting started with the DNS Firewall (from the Domain lists page).
Once we have the domain list (custom or AWS managed), we can then create a
rule group and add one or more rules that utilize the domain lists. To create a
rule group, we must select the Rule Groups option under DNS FIREWALL on the
left navigation panel of the VPC Console. This opens the Rule groups
summary page. We can then click on the "Add rule group" button to open the
Add rule group wizard. Next, we must specify the name and description of
the rule group and click on the Next button. On the next page, we must add one
or more rules to the rule group from the Add rules page, as shown in Figure
3.18 (partial snapshot). It is here, that we must select the domain list (custom
or AWS managed) and specify an action if the rule matches. The actions can be

ALLOW, BLOCK, or ALERT. If BLOCK is selected as an action, we can also specify
the type of DNS query response to send. Refer to Figure 3.18 as follows:

Figure 3.18: Create a custom domain list from VPC Console > DNS Firewall

In the subsequent pages, we must select the rule priority (in case there are
multiple rules in the rule group), add tags optionally, and finally review the
configurations made so far and create the rule group.
Once the rule group is created, the final step is to associate them with one or
more VPCs. To do so, we must click on the rule group (in the Rule groups
summary page) and in the Associate VPCs tab, as shown in Figure 3.19, click
on the Associate VPC button to associate the rule group with one or more
VPCs, as follows:

Figure 3.19: Associate VPCs with a DNS Firewall rule group

The rule groups can be shared across multiple accounts with the help of AWS
Resource Access Manager (RAM). This helps create a consistent DNS query
behavior across the organization. Moreover, the rule groups can be managed in
AWS Firewall Manager and used across AWS Organizations.

AWS Network Firewall
We already know that NACL works at the subnet level and the security groups
work at the instance level. With AWS Network Firewall, we can filter the
traffic at the VPC perimeter, which means, we can use this managed firewall
service to filter the traffic going to or coming out of an Internet gateway, NAT
gateway, VPN connection, or AWS Direct Connect connection. It can serve as
a useful intrusion detection and prevention service (IDS/IPS).
The following are the components of a network firewall:

Rule Group: Rule group is a reusable collection of stateless or stateful
rules that defines the inspection and traffic filtering criteria and actions to
take (like allow or drop packets) when the criteria match. In addition to
the common stateful rules like 5-tuple (protocol, source/destination IP,
and source/destination port), domain list, etc., the rule groups also
support Suricata compatible IPS rules (Suricata is an open-sourced threat
detection engine).
Firewall Policy: A firewall policy is a reusable set of rule groups along
with the policy behavior configuration.
Firewall: An instance of a firewall associates the single firewall policy to
the VPC that we want to protect.

AWS Network Firewall uses capacity units to control the resources required to
process the rule groups and firewall policy. As such, each rule group has a
capacity setting reserved for it in the firewall policy in which it gets added.

We must note that installing and using a network firewall requires that we
create subnets (in our VPC) in each AZ where we want to have the firewall
endpoint. Such subnets are reserved exclusively for AWS Network Firewall,
since a firewall endpoint cannot protect the applications running in the same
subnet. For better fault tolerance, these subnets must span across multiple AZs
in a single region. While creating a network firewall, we must specify each of
these subnets, so that a network endpoint gets created in each. These endpoints
in turn, can monitor and protect the resources in the other subnets whose traffic
is routed through the firewall subnet.
Additionally, to route the traffic from/to the perimeter components like Internet
gateway or NAT gateway into/from the other subnets through the firewall
subnet, we must make the necessary changes to the corresponding routing
tables. Essentially, the routing table configurations should insert the firewall
between the subnets that we want to protect and the perimeter components.
Figure 3.20 shows a simplified diagram to visualize this interaction, as
follows:

Figure 3.20: Sample deployment of AWS Network Firewall

The virtual firewall instance created by AWS Network Firewall, leverages the
stateless and stateful rule engines to inspect the network packets. The firewall
policy defines the packet inspection rules. First, the stateless rule engine
inspects the packet against the configured stateless rules. Depending on the
inspection criteria and firewall policy settings, the stateless rule engine can
either drop the packet, pass it to the destination, or forward it to the stateful
rule engine. The stateful rule engine, in turn, inspects the packet and either
drops it or passes it to the destination, depending on the configured stateful
rules.
AWS Network Firewall has integrations with AWS Firewall Manager
(discussed in a subsequent section), and thus, Firewall Manager could be used
to centrally manage and configure Network Firewall across multiple accounts
and applications within AWS Organization.
In AWS Management Console, the AWS Network Firewall related options are
available under NETWORK FIREWALL on the left navigation panel of the VPC
Console. AWS CLI V2 also provides the necessary CLI commands grouped
under the network-firewall command. The readers are encouraged to try the
AWS Network Firewall features on their own.

A note on AWS Firewall Manager
AWS Firewall Manager is a one-stop service for the administration and
maintenance of several types of protection like AWS WAF, AWS Shield
(Advanced), VPC security groups, AWS Network Firewall, DNS Firewall, etc.
AWS Firewall Manager allows us to setup these types of protection from the
Firewall Manager Console, and then applies them across all the accounts and
resources. Firewall Manager also takes the responsibility of applying these
types of protection when new resources are added. As such, AWS Firewall
Manager helps keep tighter security control and compliance across multiple
accounts or throughout an organization.
We can use AWS Firewall Manager to view the compliance status for all the
accounts and resources of an organization in scope of a Firewall Manager
policy. Firewall Manager also creates relevant findings for the
accounts/resources that are out-of-compliance. Firewall Manager is integrated
with AWS Security Hub and can send the findings directly to Security Hub
(refer to Chapter 6: Logging, Monitoring and Auditing for details around AWS
Security Hub).

Traffic mirroring
Amazon VPC supports traffic mirroring which can be used to copy the
network traffic (both inbound and outbound) from ENI attached to the Amazon
EC2 instances and send them to a target, which is often a security and/or
monitoring appliance. Traffic mirroring can thus help with the root cause
analysis of a network performance issue, reverse engineering sophisticated
network attacks, packet inspection, threat monitoring, etc. We can apply mirror
filters (a set of inbound and outbound traffic rules) to define the mirrored
traffic. Filtering could be done based on the traffic direction
(inbound/outbound), action (accept/reject), protocol, source/destination port
range, source/destination CIDR block. Traffic mirroring establishes a session
from the source ENI to the target and applies relevant filters on the mirroring
process.
The following are some of the essential considerations for implementing traffic
mirroring:

The source and the target could be in the same VPC or in a different VPC
(even belonging to a different AWS Account), connected via intra-region
VPC peering or transit gateway.
Traffic mirror target could be network interfaces or Network Load
Balancers (NLB) with a UDP listener on port 4789. NLB can help to
send mirrored traffic across zones.
Mirrored traffic is encapsulated in the VXLAN header. As such, if targets
receive mirrored traffic directly, they must be able to parse the VXLAN
encapsulated packets.
Security group corresponding to the source ENI and security group
attached to the target must allow the UDP traffic on port 4789.

Traffic mirroring is available under TRAFFIC MIRRORING on the left navigation
panel of the VPC Console. From here, we can easily create and manage
Mirror Targets, Mirror Filters, and Mirror Sessions.

Patch management
Appropriate patch management is crucial in improving the security posture of
the applications deployed on AWS. AWS Systems Manager's Patch Manager
capability centralizes the patch management and automates the process of
patching managed instances. Patch Manager can be used to apply patches to

both the operating systems as well as the applications. We can use default
patch baselines or create custom ones. Patching operation may be scheduled to
run as a Systems Manager maintenance window or on-demand. The instances
can be logically grouped into patch groups by leveraging the EC2 instance
tags. Patch Manager can scan the instances, report any non-compliance, and
push these reports to AWS Security Hub (if enabled).
A patch baseline defines which patches are approved or rejected for our
environment. There are several pre-defined patch baselines for the different
operating systems which can be used. However, custom patch baselines offer
more control over the patches and one can also create custom patch baselines
and mark them as default for a patch group. Figure 3.21 shows some of the
existing patch baselines available from AWS Systems Manager – Patch
Manager | Patch baselines (tab), as follows:

Figure 3.21: Existing patch baselines

The easiest way to create a patch group is to create a tag for the identified EC2
instances or AWS Systems Manager managed instances, with a key named
Patch Group and a value representing the patch group, say Development. Note
that a managed instance is a machine configured for AWS Systems Manager

like the EC2 instances or the on-premise instances. Let us assume, we have
two Amazon Linux 2 based EC2 instances that meets the following criteria:

Carries a tag with key=Patch Group and value=Development.
IAM role is attached to the instances, which in turn, is associated with the
permission policy named AmazonSSMManagedInstanceCore.
Instances have Amazon SSM agent installed and running in them.

Amazon Linux 2 ships with the pre-installed Amazon SSM Agent, hence there
is no need to install the agent separately.

TIP: The following link provides the details on Amazon SSM agent
including the process of manual installation:
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-
agent.html

Figure 3.22 shows the two EC2 (managed) instances on the Fleet Manager
page under Node Management from the left navigation panel of AWS System
Manager Console, as follows:

Figure 3.22: Managed instances on the Fleet Manager page

The next step is to modify the patch group of a patch baseline. For that
purpose, we select the patch baseline corresponding to Amazon Linux 2 from
the Patch baselines tab on the Patch Manager page. Once we are in the
baseline page, we must click on the Actions button and select Modify patch
groups. This will open the Modify patch groups page, as shown in Figure
3.23. We add the new patch group named Development and click on Close on
this page, as follows:

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html

Figure 3.23: Modify the patch group of a patch baseline

Next, to configure patching, we must click on the Configure patching button
on the Patch Manager page. Figure 3.24 shows the portion of the Configure
patching page, where we can select the Select a patch group option and
specify the patch group name (Development), as follows:

Figure 3.24: Configure patching

By doing so, we select the instances in the patch group for patching. We can
also schedule the patch or run the patching operation on-demand and select the
patch operation (the options are Scan and install and Scan only).
The instance patching summary can be seen from the Reporting tab in AWS
Systems Manager – Patch Manager Console. The details are also accessible
from this page and can be exported to Amazon S3.

Secure SSH and RDP session management
AWS Systems Manager's Session Manager capability can improve the instance
security by limiting the surface area of attacks. Session Manager enables us to
get the RDP/SSH access to the instances without opening the Remote Desktop
Protocol (RDP) or Secure Shell (SSH) ports in the instance security groups.
Session Manager also provides secured and auditable sessions. Essentially,
there is no need to maintain bastion hosts, manage SSH keys, etc.

Assuming that we are using a Session Manager supported operating system
with the SSM agent installed in the instance and having started the instance
with an IAM role that has permissions to start the SSM sessions (for example
AWS managed IAM policy like AmazonSSMManagedInstanceCore), we should
be able to start the sessions from AWS Systems Manager – Session Manager
Console, as shown in Figure 3.25. Under the Sessions tab on the Session
Manager page, click on the Start Session button. The Start a session page
shows the managed instances to establish a browser-based session. We can
select the instances and click on the Start session button, as shown in Figure
3.25 as follows:

Figure 3.25: Start a session with a managed instance

The vital aspect of this session management is that the access control
mechanism is solely based on IAM. We can control the access to the instances
via the IAM policies and users; no need to distribute the SSH keys, etc. Access
could be limited to a pre-defined maintenance window by using the date-based
condition operator in an IAM policy. The users can start the sessions from
Session Manager Console, EC2 Console, AWS CLI, or any combination of the
three.

TIP: The following link provides the sample IAM policies that can be
created to allow the users or groups to access Session Manager:
https://docs.aws.amazon.com/systems-manager/latest/userguide/getting-
started-restrict-access-quickstart.html

https://docs.aws.amazon.com/systems-manager/latest/userguide/getting-started-restrict-access-quickstart.html

To start the SSM sessionsvia AWS CLI, we must install the Session Manager
plugin for AWS CLI. This plugin can be installed (in Ubuntu) using the
following commands:

Download Session Manager plugin for AWS CLI

$ curl "https://s3.amazonaws.com/session-manager-

downloads/plugin/latest/ubuntu_64bit/session-manager-plugin.deb"

-o "session-manager-plugin.deb"

Install the plugin

$ sudo dpkg -i session-manager-plugin.deb

Verify the installation- If installed correctly, this command

should show

a message like- The Session Manager plugin was installed

successfully.

$ session-manager-plugin

TIP: The following link provides the details on how to install the Session
Manager plugin for AWS CLI, in the different operating systems:
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-
manager-working-with-install-plugin.html

Now, with the Session Manager plugin installed, we can start a session by
using the following AWS CLI command:
$ aws ssm start-session --target <ec2-instance-id> --profile session-user
Note that, we must specify the target which is an EC2 instance ID and ensure
to use a profile (here session-user) that corresponds to a user that has the
relevant ssm:StartSession permission on that instance.

IP filtering
Filtering or blocking the IP addresses is a commonly used technique to reject
the traffic from the IP addresses that are known to have a low/bad IP reputation
or have been previously flagged as malicious or harmful actors. In AWS, IP
blocking could be carried out in several ways.

AWS WAF Rule based on IP set

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html

AWS Web Application Firewall (WAF) has been discussed in Chapter 5:
Application Security; however, in this section, we will see how AWS WAF can
be leveraged to create a web ACL (Access Control List) that can block a set of
IP addresses. The advantage of using a web ACL to block the IP addresses is
that the same web ACL could be reused with the regional resources like
Application Load Balancers and APIs published on Amazon API Gateway.
The following steps explain how to create an IP blocking rule in AWS WAF:

1. In AWS WAF & Shield Console, we select AWS WAF | IP sets from the
left navigation panel, and on the IP sets page, we must click on the
Create IP set button.

2. On the Create IP set page, we must provide the name and description
of the IP set, select the appropriate region where this IP set will get
created, select the IP version for the IP set, and paste the IP addresses –
one IP address per line in the CIDR format. Figure 3.26 shows a snapshot
of how to create an IP set, as follows:

Figure 3.26: Creation of IP set from AWS WAF & Shield Console

3. Next, we click on the Create IP set button. This will create the new IP
set in the selected AWS region and will appear in the AWS WAF | IP sets
page.

4. Once the IP set has been created, the next step is to create the Web ACL.
To do so, we will select AWS WAF | Web ACLs from the left navigation
panel in AWS WAF & Shield Console, and on the following Web ACLs
page, click on the Create Web ACL button.

5. On the Create web ACL page, we will provide the name, description, and
CloudWatch metric name, and select the global or regional resources with
which this web ACL will be associated, and then click on Next. Figure
3.27 shows how an API published on Amazon API Gateway (named
echo) is associated with the web ACL, shown as follows in Figure 3.27.

Figure 3.27: Associate AWS resources like APIs, ALBs, etc. with Web ACL

6. On the Add rules and rule groups page, in the Rules section, we will
select Add my own rules and rule groups from the Add rules
dropdown and click on the Next button. Figure 3.28 shows how to add a
custom rule to Web ACL, as follows:

Figure 3.28: Add custom rule to Web ACL

7. On the Rule type page, we will select the Rule type as IP set and
supply a name for the rule and then select the IP set that we recently
created (named bpb479-Ipset-block) from the IP set dropdown. We
also need to select the options where any IP address from the IP set
appearing as the source IP will be blocked. Next, we will select the Add
rule button to add this custom rule to the Web ACL. Figure 3.29 shows
how to select an existing IP set and associate it with Web ACL and
ensure that the traffic from this IP set will be blocked by the Web ACL,
as follows:

Figure 3.29: Apply IP set rule to Web ACL

8. Once back to the Add rules and rule groups page, we must remember
to ensure that the Default action is Allow, for the requests that don't
match any rules in the web ACL (as shown in Figure 3.30). Otherwise,
the requests from the valid IPs will also get blocked. Refer to Figure 3.30
as follows:

Figure 3.30: Allow if requests do not match the IP set rule

9. In the following steps, select a high priority for the IP blocking rule,
create some CloudWatch metrics, review the configurations, and create
the web ACL.

Note that, now with the web ACL created and associated with echo API on
Amazon API Gateway, any API requests from the IPs included in the IP set
will be blocked and HTTP 403 Forbidden will be returned by the API
Gateway.
Amazon CloudFront has integrations with AWS WAF, which means, we can
easily have the IP filtering done at the edge by enabling the IP set-based web
ACL on the CloudFront distribution.

Blacklisting with resource policy
The IAM resource-based policies could be used to blacklist the IP ranges for
the services that support the resource based policies. In this section, we will
primarily learn how to block the API traffic from a list of IP ranges. With
Amazon API Gateway, we can actually create a resource policy associated
with an API that can block the specific IP addresses or CIDR ranges.
To set a resource policy for an API in Amazon API Gateway Console, we will
select the API and click on API | Resource Policy from the left navigation
panel. On the Resource Policy page, we can select the IP Range Denylist
button at the bottom which generates a sample resource policy. This policy will
be amended to match our requirements. Figure 3.31 shows the generated
resource policy, as follows:

Figure 3.31: Configure API resource policy to block IPs in Amazon API Gateway Console

The following sample resource policy, utilizes the IpAddress condition
operator with the aws:SourceIp condition key to deny access to the API when
the source IP of the request falls within the blacklisted IP address ranges
mentioned in the resource policy. The blacklisted IP ranges designated by
CIDR-n in the JSON, will have to be replaced by actual CIDR based IP ranges
(for example: 1.2.3.4/32), as follows:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Deny",

"Principal": "*",

"Action": "execute-api:Invoke",

"Resource": [

"execute-api:/PROD/*"

],

"Condition" : {

"IpAddress": {

"aws:SourceIp": ["<CIDR-1>", "<CIDR-2>"]

}

}

}

{

"Effect": "Allow",

"Principal": "*",

"Action": "execute-api:Invoke",

"Resource": [

"execute-api:/PROD/*"

]

}

]

}

Note that, the Allow statement is required, without which, the requests coming
from the other legitimate source IP will be blocked, owing to the implicit deny
rule of the IAM policies.

Blacklisting with NACL
We have already covered NACL in this chapter. However, in this section, we
will specifically focus on how the IP addresses can be blacklisted at the subnet
level using NACL. Unlike the security groups, NACL supports the DENY
action, which means that the traffic from a specific set of source IP address or
IP ranges could be denied entry to the associated subnets. Figure 3.32 shows
how to edit an existing network ACL to deny the subnet level traffic from a
representative blacklisted IP address (1.2.3.4/32). Note that the DENY rule must
have a higher priority (lower rule number). Refer to Figure 3.32 as follows:

Figure 3.32: Configure a network ACL with DENY action

Whitelisting with security groups
The security groups can be used to whitelist a set of IP addresses. This is
applicable when we know the specific set of IP addresses (or CIDR ranges)
allowed access to the instance or network interface safeguarded by the security
group. The security groups have an implicit deny policy on the inbound traffic,
as such, whitelisting will allow the traffic only from the specific IP ranges.
Blacklisting cannot be done with the security groups, as unlike NACLs, they
do not allow explicit deny rules.

Vulnerability assessment
Vulnerability Assessment is the process of identifying the risks and
vulnerabilities in a system along with their classification and rating. In this
section, we will look at Amazon Inspector which is a tool for vulnerability
assessment of the Amazon EC2 instances and Amazon Elastic Container
Registry (ECR) image scanning feature, primarily meant for vulnerability
assessment of the container images.

Amazon Inspector
Amazon Inspector is an automated security and vulnerability assessment
service that can improve security and enforce compliance of the applications
deployed primarily on Amazon EC2. Amazon Inspector can perform
automated assessments and generate findings based on selected rules packages.
A rules package is essentially a collection of rules that corresponds to a
security goal. The security goal can be specified by selecting an appropriate
combination of supported rules packages in an assessment template. The
following rules packages are supported by Amazon Inspector:

Network assessment

Network Reachability-1.1

Host assessment

Common Vulnerabilities and Exposures-1.1
CIS Operating System Security Configuration Benchmarks-1.0
Security Best Practices-1.0

Amazon Inspector performs an agent-assisted assessment. In most cases,
Amazon Inspector agent must be running in the EC2 instances that are part of
the assessment target. Note that, Network Reachability-1.1 rules package does
not require the Amazon Inspector agent to be installed in the targets.
The following link provides the details on how to install Amazon Inspector
agent:
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_installi
ng-uninstalling-agents.html
To avoid manual installation of Amazon Inspector agent, we may want to use
Amazon Linux 2 AMI with Amazon Inspector Agent AMI in which the agent
comes pre-installed and is available in the AWS marketplace, as shown in
Figure 3.33, as follows:

Figure 3.33: Amazon Linux 2 AMI with pre-installed Amazon Inspector Agent

Let's see how to create an assessment template and run an assessment using
AWS Management Console. We assume that we already have the EC2
instances with the installed Amazon Inspector agent. Refer to the following
steps:

1. First, we will create the assessment targets. For this, we will click on the
Assessment targets on the left navigation panel of Amazon Inspector
Console. On the Assessment targets page, we will click on the Create
button.

2. The assessment targets could include all the EC2 instances, or we could
also identify the targets by tags. In this case, we assume that each of our
EC2 targets carry a tag named PROJECT with a value bpb479, as shown in
Figure 3.34. (A tag can be easily added to an EC2 instance during the
creation process). With these changes, we can click on the Save button.

https://docs.aws.amazon.com/inspector/latest/userguide/inspector_installing-uninstalling-agents.html

This should create a new assessment target, as shown in Figure 3.34 as
follows:

Figure 3.34: Creation of assessment targets from Amazon Inspector Console

3. Next, we need to create the assessment template that will define the
assessment targets, rules packages to use, duration of assessment run,
assessment schedule, etc. For this, we will click on Assessment
templates from the left navigation panel in the Amazon Inspector
Console. On the Assessment templates page, we will specify our
choices, as shown in Figure 3.35. Note that, we could schedule a
recurring assessment once every day, week, month, etc. Finally, we will
click on the Create and run button, which will run the assessment.
Refer to Figure 3.35 as follows:

Figure 3.35: Creation of assessment template from Amazon Inspector Console

4. Once the assessment run is started, it can be seen from the Assessment
runs page (selected from the left navigation panel). Initially, the status of
the run would show Collecting data. Once the run completes, the
status would change to Analysis complete and the report is made
available in the HTML or PDF format via a download link, as shown in
Figure 3.36, as follows:

Figure 3.36: Assessment run completion in Amazon Inspector Console

5. The findings could be seen from the Findings page (selected from the
left navigation panel) which could be filtered based on severity, as shown
in Figure 3.37 as follows:

Figure 3.37: Findings in Amazon Inspector Console

Each finding shows the details along with the recommendations on how to fix
the vulnerability.

ECR image scans
Amazon Elastic Container Registry (ECR) is a fully managed container
registry that supports image scanning of the container images that are pushed
to ECR. Image scanning is an automated vulnerability assessment feature
available in ECR. This feature is useful in improving the security of the
container images by scanning the images against the Common Vulnerabilities
and Exposures (CVEs) database which represents a broad set of common
vulnerabilities.
Figure 3.38 shows how to enable Scan on push (under the Image scan
settings section), when creating a new repository from the Amazon ECR |
Repositories page in the Amazon Container Services Console.

Figure 3.38: Enable "scan on push" flag for an ECR repository

Note that the existing repositories can also be updated with this flag.
Let's look into the following AWS CLI commands to create an ECR repository
(named bpb479-images-repo) with the scan-on-push flag enabled, and update
the flag for an existing repository (named bpb479-images-repo-2):

Set scanOnPush = true while creating an ECR repository
$ aws ecr create-repository --repository-name bpb479-images-repo
\
--image-scanning-configuration scanOnPush=true --region ap-
south-1

Set scanOnPush = true for an existing ECR repository
$ aws ecr put-image-scanning-configuration \
--repository-name bpb479-images-repo-2 \
--image-scanning-configuration scanOnPush=true --region ap-
south-1

Image scanning could be scheduled manually on an image at any point either
via ECR Console or AWS CLI. The following is the AWS CLI command to
initiate a manual image scanning for an image with the tag equal to "bpb479-
base" in the ECR repository named "bpb479-images-repo":

$ aws ecr start-image-scan --repository-name bpb479-images-repo \
--image-id imageTag=bpb479-base --region ap-south-1

The scan findings are made available in the ECR Console under Amazon
Container Services | Amazon ECR | Repositories | Select Repository |
Images page | Vulnerabilities column. To retrieve the scan findings, we
must select Details for the image. Otherwise, we could fetch the findings for
an image with the tag equal to bpb479-base, using AWS CLI, as follows:

$ aws ecr describe-image-scan-findings \

--repository-name bpb479-images-repo \

--image-id imageTag=bpb479-base --region ap-south-1

Distributed Denial of Service and AWS Shield
AWS Shield is a managed DDoS protection service. It provides two levels of
protection – AWS Shield Standard and AWS Shield Advanced. Before getting
into the details of this service, let's first try to understand what a DDoS attack
looks like and the general guidelines around how to mitigate such an attack.

A note on Distributed Denial of Service
A Distributed Denial of Service (DDoS) attack is a malicious attempt to
temporarily disrupt or suspend the online services of a site or hosting server. A
DDoS attack is triggered from numerous globally distributed network of
compromised devices (or bots). This distributed network is known as a botnet.
Essentially, a DDoS attack can be classified into the following types:

Volume based attacks: A volume-based attack like the UDP flood or
ICMP flood, saturates the victim's bandwidth. The magnitude of such an
attack is measured in terms of bits per second (bps).
Protocol attacks: Protocol attacks like SYN flood, Ping of Death (PoD),
Smurf DDoS, etc., consumes the resources of the victim or the
intermediate communication devices like load balancers and firewalls.
The magnitude of such an attack is measured in packets per second (pps).

Application layer attacks: Application layer (layer-7) attacks like
GET/POST flood, are low-and-slow attacks that target the application
directly by sending seemingly legitimate requests with the goal to crash
the victim's web server. The magnitude of such an attack is measured in
requests per second (rps).

Figure 3.39 shows the schematics of a UDP flood attack in which the attacker
leverages the globally distributed infected devices to launch a volume based
UDP attack on the victim (site).

Figure 3.39: Simplified schematic of a UDP Flood DDoS attack

Essentially, this results in the choking of the available bandwidth for the
legitimate users of the site.

DDoS Mitigation
While AWS Shield can provide active monitoring and protection from the
common DDoS attacks, there are quite a few steps that we can take while
planning our infrastructure and designing our applications, which can help to
mitigate the impact of a large-scale DDoS attack. The steps are as follows:

Reduce attack surface area: It is always a good idea to limit the number
of publicly accessible endpoints, safeguard publicly exposed resources,
and isolate the internal traffic from the external world. The use of VPC,
private load balancers for internal traffic distribution (instead of public
load balancers), bastion hosts for SSH/RDP access (we have already
checked a better alternative to using bastion hosts – AWS Systems
Manager Session Manager), NAT gateways, etc., can reduce the surface
area of an attack and make it relatively easier to control the attack.
Setting up of appropriate firewall rules using the security groups (or
otherwise) and opening the ports that are essential to the working of an
application can also prove helpful to reduce the scope of an attack.
Leverage resource quota and rate limiting: AWS assigns regional
service usage quotas on the services, which can be very useful during a
DDoS attack to keep a tighter leash on the mounting resource usage costs
in the event of an attack. The rate limiting features in services like
Amazon API Gateway can also help throttle the onslaught of the
incoming API requests.
Provision to scale: In the event of a DDoS attack, the application
infrastructure must have the ability to scale to absorb the attack. The
AWS services like Route 53, Elastic Load Balancers (ELB),
Autoscaling, CloudFront, S3 and many more, could be leveraged to
operate at a high scalability factor.
Learn normal behavior: The knowledge of normal behavior in terms of
the traffic pattern and load of an application, can greatly help in
responding quickly to a DDoS event. A sudden abnormal spike in the
traffic during the off-peak business hours or a massive onslaught of
requests or requests pouring in from certain parts of the world where the
presence of the application users is limited, can point to an ongoing
attack.

AWS Shield
As stated earlier, AWS Shield provides two levels of DDoS protection –
Standard and Advanced. Standard is automatically enabled and provides an
always-on protection. However, AWS Shield Advanced requires explicit
enabling and offers additional protection against the DDoS attacks. Note that
AWS Shield Advanced costs 3000 USD per month.

AWS Shield Standard
AWS Shield Standard is available to the customers at no additional cost and
offers automatic protection against the common transport layer attacks. We can
reap the benefits of AWS Shield Standard if we use CloudFront or Route 53,
since these services get availability protection by leveraging the global edge
network, against the known infrastructure attacks in layer 3 and 4.

AWS Shield Advanced
AWS Shield Advanced offers higher levels of protection against the DDoS
attacks and needs to be explicitly subscribed from AWS WAF & Shield
Console. The service allows us to add specific resources that needs protection.
These resources can also be logically grouped together as Protection groups.
The following AWS resource types can be protected by AWS Shield
Advanced:

Amazon CloudFront distributions
Amazon Route 53 hosted zones
AWS Global Accelerator accelerators
Amazon EC2 Elastic IP addresses
Application Load Balancers and other ELBs

Note that, Network Load Balancers, or NLBs, could be protected by
associating them with the elastic IP and then adding this elastic IP to the AWS
Shield Advanced protection list.
AWS Shield Advanced has several other features that can prove useful, which
are as follows:

In addition to protection from the common layer 3 and 4 attacks, AWS
Shield Advanced also provides monitoring and mitigation of layer 7
(application layer) attacks.
AWS WAF is offered free of cost, along with AWS Shield Advanced.
While Web Application Firewall is not primarily used to stop DDoS
attacks, it can still be used to filter the traffic based on rules like request
size constraint conditions, geo-match conditions, rate-based rules, etc.
AWS Shield Advanced provides real-time metrics and extensive visibility
into the details of layer 3, 4, and 7 attacks.

It offers cost protection against spikes in the AWS bill due to a DDoS
attack on the protected resources.
AWS Shield Response Team (SRT) is available 24x7 for assistance
during a DDoS attack. This feature is subject to subscription to either
Business Support Plan or Enterprise Support Plan.

Global threat dashboard
AWS Shield provides an informational global threat dashboard which covers
the statistics relevant to the most recent attacks (ranging from 1 day to 2
weeks) that AWS is presently monitoring and mitigating. The services covered
are Amazon EC2, Amazon CloudFront, Elastic Load Balancing, and Amazon
Route 53. This dashboard is accessible under AWS Shield | Global threat
dashboard from the AWS WAF & Shield Console. The dashboard also provides
information around the most common vector of attack, total number of attacks,
largest packet per second, bit per second, and requests per second. Figure 3.40
shows a portion of the threat dashboard, as follows:

Figure 3.40: Global threat dashboard

Conclusion
In addition to the range of security services and features provided by AWS, we
can also employ third party solutions available on AWS Marketplace or
otherwise to boost our infrastructure security. The modern network security
solutions (like Barracuda CloudGen Firewall, etc.) can perform behavioral and

heuristic analysis in addition to the standard network protection. There are
popular intrusion detection and prevention solutions in the market which could
be applied for better security of the resources in AWS. While the security of
the infrastructure is important, the security of the data stored within this
infrastructure is equally important.
In the next chapter, we will take a look at the various data security features and
services provided by AWS.

CHAPTER 4
Data Security

Introduction
The importance of data security is paramount in the public cloud. Therefore,
Amazon Web Services (AWS) has introduced several services and controls to
ensure the security and safety of the customers' data. These services go a long
way to bolster the confidence of the enterprises and businesses to move and
persist their data in AWS as part of their cloud transformation journey.

Structure
In this chapter, we will cover the following topics:

Fundamental concepts of securing data
AWS Key Management Service (KMS)
AWS CloudHSM
Amazon S3
Amazon EBS
Amazon DynamoDB
Amazon RDS
Amazon Macie for data loss prevention

Objectives
In this chapter, we will learn the fundamental concepts of cryptography, digital
signature, and security of data at rest and in motion. These concepts play a vital
role in the understanding of data security in AWS. We will learn about the
fundamental AWS data security service – Key Management Service (KMS).
We will take a quick introductory view of AWS CloudHSM (Hardware
Security Module). Furthermore, we will understand how services like Amazon
S3, Amazon RDS, and Amazon DynamoDB leverage AWS KMS and various
other controls to help secure the data persisted by them. Finally, we will

understand how Amazon Macie can help us create scheduled jobs or one-time
jobs to discover and classify sensitive data.

Fundamental concepts of securing data
In this chapter, we will understand some concepts to better grasp how data
security works. These include the process of encryption and decryption which
uses symmetric and/or asymmetric ciphers, digital signature, and security of
data at rest and in motion. All these are methods and techniques that can help
us protect sensitive data.

Fundamentals of cryptography
Cryptography is the art and science of keeping messages or data secure. A
cipher or cryptographic algorithm is a mathematical function used for
encryption and decryption. Thus, a cipher is a combination of two related
mathematical functions – one serving the purpose of encryption and the other
of decryption. The primary goal is to ensure that the message itself is
safeguarded from the prying eyes of any eavesdropper who might get access to
the encrypted message, which is also known as confidentiality. Here’s a more
formal definition of the encryption and decryption processes:

Encryption or enciphering is the process of disguising a message, or
cleartext, into an unintelligible form, also known as ciphertext.
Decryption or deciphering is just the reverse process, where a ciphertext
is transformed into the original cleartext.

Now, one could think of keeping this cipher a secret and using this secret
cipher for encryption and decryption of messages. However, such algorithms
(also known as restricted algorithms) are simply inadequate for high security
applications. This is so because this strategy will not scale to a large group of
users, plus there is always a risk of the secret algorithm being revealed to
unintended parties. Additionally, there is always a question of quality of the
cipher and its standardization.
This problem is essentially solved with a key. This key is an individual value
from a range of possible values known as the keyspace. Both the encryption
and decryption operations are dependent on this key. The security of such a key
based algorithm is not based on the secrecy of the implementation but on the

strength of the key. This means, the cipher itself could be published and
analyzed.
Figure 4.1 illustrates how a cleartext message (M) can be encrypted into a
ciphertext (C) using a key (K). Furthermore, the ciphertext (C) can then be
decrypted into the original cleartext message (M) with the help of the key (K).
Some ciphers use different encryption and decryption keys (also termed as key-
pair). Refer to figure 4.1 as follows:

Figure 4.1: Process of encryption and decryption with symmetric key

Symmetric and asymmetric algorithms
Key based algorithms are generally grouped into two categories – symmetric
and public-key (asymmetric) algorithms. Symmetric algorithms are the ones
where the encryption and decryption keys are the same (refer to figure 4.1).
Thus, if a cleartext message is encrypted using a key (K) and this ciphertext is
sent to the intended recipients, then the intended recipients need to have the
same key (K) to decrypt the message. This type of algorithm basically comes
with the complexity of the secure key exchange protocols since anyone in
possession of the key will decrypt the ciphertext. Note that, there are
symmetric key algorithms which use encryption keys that can be calculated
from the decryption keys and vice versa. However, for explaining the concept
of symmetric algorithms, we will assume the use of the same key for both the
encryption and the decryption, and in fact, most symmetric algorithms use this
strategy. Advanced Encryption Standard (AES) and Data Encryption
Standard (DES) are some of the commonly used symmetric algorithms.
Asymmetric or public key algorithms use different encryption and decryption
keys. Additionally, the encryption key cannot be used to calculate the
decryption key and vice versa, in a reasonable amount of time. The essence of

public-key algorithms is that the encryption key (or public key) can be made
public. This means, anyone can use the public key to encrypt a message.
However, only the intended recipient, who owns the decryption key (or private
key), can decrypt the message. This process is illustrated in figure 4.2, where a
cleartext message (M) is encrypted using the public key (PK) and the resulting
ciphertext (C) is decrypted using the private key (K), as follows:

Figure 4.2: Process of encryption and decryption with asymmetric key

The most common public key algorithms in use today are Rivest-Shamir-
Adleman (RSA), Elliptic Curve Digital Signature Algorithm (ECDSA),
Digital Signature Algorithm (DSA), etc.

Digital signature and message security
While cryptographic algorithms or ciphers can be used primarily for
confidentiality, they are often used for other purposes as well, like –
authentication, integrity, and nonrepudiation. These are explained as follows:

Authentication: The message receiver should be able to authenticate the
source or origin of the message. An intruder should not be able to pose or
masquerade as the message sender.
Integrity: The message receiver should be able to verify that the message
has not been altered or updated during transit.
Nonrepudiation: The message sender should not be able to deny being
the sender of the message falsely.

A digital signature can provide the message recipient with a firm reason to
believe that an authenticated (known) sender created the message, that the
message was not tampered with during transmission, and that the signer cannot

successfully claim that they did not sign the message. figure 4.3 illustrates how
digital signature works, as follows:

Figure 4.3: Digital signature

Let's consider a message sender who intends to send a digitally signed message
(not encrypted) to a receiver. We assume that the sender has generated a key-
pair comprising of a public and a private key. Furthermore, the sender has
shared the public key with the receiver. With this setup, the sender can create
any message of an arbitrary length and leverage a cryptographic hash function
to generate a fixed-length hash value representing the original message. This
hash value is then encrypted using the sender's private key and this encrypted
value happens to be the digital signature of the message signed by the sender.

TIP: A cryptographic hash function is a mathematical function that can
take the data of any arbitrary length as the input and produce a fixed
length encrypted text called a hash value (also referred to as message
digest, digital fingerprint, or digest). Click on the following link for a

quick introduction: https://www.synopsys.com/blogs/software-
security/cryptographic-hash-functions/

At some point, the message and digital signature and details of the
cryptographic hash function are transmitted to the receiver. The receiver
generates the cryptographic hash value of the received message using the
knowledge of the cryptographic hash function details sent by the sender. Then,
the receiver attempts asymmetric decryption of the message's digital signature
using the sender's public key. This decryption will yield the original hash value
of the message computed by the sender. As the final step, the receiver can
compare the original hash value (computed by the sender) with the hash value
computed from the message (computed by the receiver). If the two hashes
match, the receiver can ensure that the message has not been altered in transit.
Also, since the sender's public key was used to decrypt the digital signature
successfully, the receiver can be sure that it was indeed the authentic sender
who had sent the message.
So far, we have been explaining how to create a digital signature and how to
verify the same. Now, let's put confidentiality in the mix (refer to figure 4.4).
We assume a setup where both the sender and the receiver have their own key
pairs. That is, both the communicating parties have generated their own sets of
public and private keys. Moreover, they have exchanged their public keys. In
this setup, the receiver, in addition to generating a digital message signature,
can also encrypt the message using a symmetric algorithm and a randomly
generated key. This symmetric (random) key is then asymmetrically encrypted
using the public key of the receiver. Finally, the encrypted message, digital
signature (along with cryptographic hash function details) and the encrypted
symmetric key are transmitted to the receiver.
On the other side of the transmission, the receiver uses its own private key to
decrypt the encrypted random key asymmetrically. Once the random key is
decrypted, it can be used to decrypt the message symmetrically. Now, to verify
the signatory and integrity, the digital signature verification can be used. Refer
to figure 4.4 as follows:

https://www.synopsys.com/blogs/software-security/cryptographic-hash-functions/

Figure 4.4: Digital signature with message security

Security of data in motion and at rest
When the data is being moved from one system to another or from one storage
to another, across the Internet or through a private network, it is considered in
motion. Adequate security measures for the data-in-transit are of utmost
importance, as the data is often considered at a higher risk of breach while in
transit. On the other hand, the data is considered in a state of rest when it is not
being actively moved between the devices and networks and is stored inside
the boundaries of an application or service in some form of the data storage
device or network. Undoubtedly, sensitive data should be protected both in
motion and at rest.
Cryptography plays a major role in protecting the data. While storing the data
in a device, robust encryption algorithms are used to either encrypt the data
itself prior to storing them and/or encrypt the storage device. Strong cipher

suites and secure protocols (like HTTPS, SSL/TLS, SFTP, etc.) are nowadays
commonly used for securing the data in motion.

AWS Key Management Service (KMS)
As the name suggests, AWS KMS is the cryptographic key management
service which is integrated with several other AWS services like Amazon EBS,
Amazon S3, Amazon RDS, Amazon DynamoDB, etc., and it manages the
encryption for these services. Internally, AWS KMS uses highly secure and
tamper proof hardware security modules (HSMs) to store and manage the
keys. Let's dive in and get acquainted with some concepts prevalent with this
service.

Customer Master Key (CMK)
Customer master keys (CMKs) are essentially a logical abstraction of the
encryption keys used to encrypt the data. In addition to the key material that is
used for the purpose of encryption and decryption, CMKs also contain
metadata like the key identifier, key alias, creation date, description, and key
state. These metadata help in managing the lifecycle of the key. Support for
both the symmetric (AES 256-bit key) and the asymmetric CMKs (RSA
keypair or Elliptic curve keypair) are available in AWS KMS.
CMKs can be used to encrypt the data no larger than 4 KB (4096 bytes), and as
such, they are not used for the full-fledged encryption/decryption of the
application data. In fact, they are primarily used to encrypt the data keys.
There are three types of CMKs supported by AWS KMS, which are as follows:

AWS Owned CMKs: These types of CMKs are owned and managed by
AWS for use in multiple AWS accounts. These CMKs are not part of the
customer's account, and therefore, the customer cannot create, view, use,
or track these CMKs. AWS services, however, can use their AWS owned
CMKs to protect the resources in a customer's account. The key rotation
strategy for this type of CMK is defined by the AWS service that creates
and manages the CMKs.
AWS Managed CMKs: AWS managed CMKs are created, managed,
and used on behalf of the customer, by an AWS service that is integrated
with AWS KMS (like S3, RDS, etc.). These CMKs appear under the AWS
managed keys page in the AWS KMS Console and cannot be managed or
rotated by the customer. These CMKs are automatically rotated every

three years. The easiest way to identify an AWS Managed CMK is to
check the 'key alias' (refer to figure 4.5), which has the following format
– aws/<service-name> (for example: aws/s3 or aws/sns, etc.). Refer to
figure 4.5 as follows:

Figure 4.5: AWS managed CMKs in KMS Console

Customer Managed CMKs: These are the CMKs that are fully
controlled by the customer, and as such, these are created, owned, and
managed by them. These keys appear under the Customer managed keys
page in the AWS KMS Console and could be optionally rotated once
every year automatically. We can create two types of Customer managed
CMKs – Symmetric and Asymmetric. There are, in turn, two types of
asymmetric customer managed CMKs that can be created based on the
key usage – encrypt/decrypt and sign/verify.

Key material origin
Symmetric CMKs have a special property called the key material origin. This
property identifies the source of the key material in the CMK. When creating a
symmetric CMK (from AWS Management Console), we are given three
options (refer to figure 4.6), which are as follows:

KMS: This is the default option and points to the fact that AWS KMS
creates and manages the CMK key material in its own key store. This is
the recommended option in most cases.
External: With this option, we can create a CMK with the key material
imported from an external source known as the backing key. In this case,

when the CMK is created, it has no key material. The key material is
imported later into the CMK. This option is commonly known as Bring
Your Own Key (BYOK). The security and management of the external
key material is outside the scope of AWS KMS.
Custom key store (CloudHSM): Once we create a custom key store
using AWS CloudHSM service (AWS CloudHSM has been explained in
a separate section in this chapter), we can then create the symmetric
CMKs in that key store, with the key material generated by AWS KMS.
Figure 4.6 shows the three key material options in AWS Management
Console as follows:

Figure 4.6: Symmetric key material origin in KMS Console

AWS KMS supports the imported key material for the symmetric CMKs in the
AWS key stores only. Importing of the key material is not supported for the
asymmetric CMKs or CMKs in the custom store.

Encryption and decryption with CMK
Now that we know how a CMK works and what a key material is, let's get into
some action. We will create a symmetric CMK (with the KMS key material)

from the AWS Management Console (AWS CLI could also be used) and then
use that master key through AWS CLI to encrypt and decrypt a simple text.
We will start with the assumption that two IAM users have been created and
configured with a set of permissions as defined in Table 4.1 as follows:

IAM Username IAM Policy Permissions KMS Key Policy
Role

AWS CLI Profile

key-manager1 AWS Key
Management

Service Power
User

All permissions
included in the
AWS managed

IAM policy

Key administrator N/A

key-user1 Custom policy kms:Encrypt, kms.
Decrypt, kms:
Describe Key

Key user key-user

Table 4.1: CMK based encryption and decryption IAM policy permissions

Once in the AWS KMS Console, we will click on Customer managed keys on
the left pane. As part of the CMK creation process, we will complete the
following steps:

1. Select Key type as Symmetric and Key material origin as KMS (refer
to figure 4.6). Click on the Next button.

2. Provide a key alias name as bpb479 (any other valid name could also be
used) and optionally create some tags. Click on the Next button.

3. Select the key administrator and permissions. On this page, we will select
the key-manager1 user as the key administrator. We do have the option
of selecting an IAM role (with proper permissions) instead of an IAM
user on this page. Click on the Next button.

4. Define the key usage permissions and select the IAM user – key-user1
(who has the permission to perform the cryptographic operations like
encrypt and decrypt). Here as well, we have the option to select an IAM
role. Click on the Next button.

5. View and edit the key policy. This key policy (JSON structure) is
basically a resource-based policy attached to the CMK. We can edit the
policy based on our needs.

Once the preceding steps have been executed, we will notice that the Customer
managed keys page has our CMK with a key alias of bpb479 and a unique key
ID. Refer to figure 4.7, as follows:

Figure 4.7: Customer Managed Keys or CMKs

The resource-based policy attached with the CMK should include the account
root user as one of the principals. This is so because, the IAM root user cannot
be deleted. Any other IAM user can be deleted, rendering the CMK unusable
(if the root user is not a principal). The following is what a sample key policy
statement with root as the principal looks like:

"Statement": [

{

"Sid": "Enable IAM User Permissions",

"Effect": "Allow",

"Principal": {
"AWS": "arn:aws:iam::<account-id>:root"

},

"Action": "kms:*",

"Resource": "*"

}

]

With CMK created, we will now use AWS CLI to use this master key to
perform some basic cryptographic operations.
To configure AWS CLI, we will create a profile named key-user and apply the
AWS access key ID and the secret access key for the IAM user – key-user1.
We must note that, if AWS CLI is used from an EC2 instance, it is best to
leverage the IAM role instead of the IAM user credentials since the IAM roles
work with the temporarily short-term credentials. The command to create the
profile is as follows:

$ aws configure --profile key-user

Once the profile is created and configured, we can fire away the CLI
commands to perform the encryption and decryption using the CMK with alias

bpb479. Let's try to encrypt a sample file named samplefile.txt with the
cleartext – This message is confidential. We will issue the following
command:

$ aws kms encrypt --key-id "alias/bpb479" \

--plaintext fileb://samplefile.txt \

--profile key-user

Note that we have identified the CMK with its key alias and this alias is
prefixed with the pattern alias/. The CMK could also be identified with the
key ID, key ARN, or alias ARN. However, when using the CMK within a
single AWS account, the best practice is to use the key alias (a friendly name)
to refer to the CMKs from the applications. This actually helps with the easy
rotation of CMKs.
The preceding command produces a JSON output that carries three fields –
CiphertextBlob, KeyId, and EncryptionAlgorithm. The CiphertextBlob carries
the ciphertext. To store this output to a file (named samplefile.enc), we can
issue the following command:
$ aws kms encrypt --key-id "alias/bpb479" \
--plaintext fileb://samplefile.txt \

--profile key-user \

--query CiphertextBlob \

--output text | base64 -d > samplefile.enc

What this command does is that it queries the specific CiphertextBlob field,
converts the output in text, performs a base64 decoding (assuming Linux
operating system with base64 utility), and finally redirects the output to a file
named samplefile.enc. At this point, our confidential text has been encrypted
using the CMK that we created and is now residing in a binary file.
The next step is to perform the decryption of the binary file and get back the
original cleartext. We will use the following command for that purpose:

$ aws kms decrypt --key-id "alias/bpb479" \
--ciphertext-blob fileb://samplefile.enc \

--profile key-user \

--query Plaintext \

--output text | base64 -d

Note that, in this case, we have actually queried the field Plaintext, which is
returned by the decrypt command, converted the output to text, and finally

performed a base64 decoding. The base64 decoding is important since the
decrypt command returns the output in a base64 encoded format. The output of
the command will be – This message is confidential – which is the
original message contained in the samplefile.txt file.

Data key and data key pairs
Data keys, unlike CMKs are encryption keys used to encrypt large amounts of
data and are not limited by the 4KB threshold pertaining to the size of the data
being encrypted. In fact, the CMKs can be used to generate, encrypt, and
decrypt the data keys. But they are not stored, managed, or tracked by AWS
KMS. In essence, the data keys must be managed outside of AWS KMS.
The data key pairs are asymmetric data keys that consists of a key-pair – public
key and private key. These keys are mathematically related to one another.
They can be used for encryption and decryption or signing and verification
outside AWS KMS. AWS KMS supports the RSA key pairs and Elliptic curve
key pairs and protects the private keys in each key pair under a specified
symmetric CMK. However, as with data keys, AWS KMS does not store,
manage, track, or perform the cryptographic operations with the data key pairs.

Envelope encryption
Envelope encryption is a technique of having the data encrypted by the data
key and encrypting the data key with a master key. So, while the data is
protected by the data key, the data key itself in turn, is protected with a master
key. Figure 4.8 explains how envelope encryption works with AWS KMS, as
follows:

Figure 4.8: Process of envelope encryption

Typically, we request the AWS KMS service to generate a unique data key and
specify a CMK which will be used to encrypt it. As a response, AWS KMS
returns a plaintext version of the data key as well as an encrypted version. We
can use the plaintext version to encrypt data and subsequently delete it (from
the disk and memory). However, we can safely store the encrypted version of
the data key (preferably along with the data) for decryption purposes.
During decryption, we request AWS KMS to decrypt the encrypted data key
which returns the data key in plaintext. Now, the plaintext data key could be
used to decrypt the data. Finally, we will erase the plaintext version of the data
key from the disk as well as from the memory.

Encryption and decryption with data key
Now that we know the concepts around data keys and how they can help create
envelope encryption and CMKs, let's jump into some action. We will generate
a data key using AWS CLI and then use that data key to encrypt the data/file.
We will start with the assumption that there exists a CMK (with an alias
bpb479) and an IAM user also exists configured with a set of permissions, as
defined in Table 4.2. Note that, key-user1 has the permissions to perform
kms:GenerateDataKey and kms:Decrypt. Moreover, we assume that AWS CLI
has been configured to use the profile of key-user which has been configured
with the user credentials of key-user1. Refer to Table 4.2 as follows:

IAM User
Name

IAM Policy Permissions KMS Key
Policy Role

AWS CLI
Profile

key-user1 Custom
policy

kms.Decrypt, kms: Describe Key,
kms:GenerateDataKey

Key user key-user

Table 4.2: Data key based IAM policy permissions

With the configurations out of the way, we can now generate a data key using
AWS KMS. To do that, we will use the following command:

$ aws kms generate-data-key --key-id "alias/bpb479" \
--profile key-user \

--key-spec AES_256

The key-spec option specifies the length of the data key to be generated. The
possible values are AES_128 (128-bit key) and AES_256 (256-bit key).
The preceding command produces a JSON output that carries three fields –
CiphertextBlob, Plaintext, and KeyId. CiphertextBlob carries the encrypted

data key (encrypted with CMK identified by the key-id). Plaintext carries the
data key in cleartext. We must remember that both these formats of the data
key are in fact, base64 encoded.
Thus, to decode the ciphertext data key and plaintext data key, we can use the
following commands:

$ echo "<CiphertextBlob value>" | base64 -d > encrypted.key

$ echo "<Plaintext value>" | base64 -d > plaintext.key

Once decoded, we can use the plaintext data key file (named plaintext.key)
to encrypt the data (outside AWS KMS), using tools like openssl. Once the
file/data is encrypted, we will remove the plaintext.key and keep the
decoded version of the encrypted key file (named encrypted.key) to be used
during decryption.
During decryption, we will use the encrypted key file to fetch the plaintext key
from AWS KMS, using the following command:

$ aws kms decrypt --key-id "alias/bpb479" \
--profile key-user \

--ciphertext-blob fileb://encrypted.key

The preceding command produces a JSON output that carries three fields –
KeyId, Plaintext, and EncryptionAlgorithm. Plaintext carries the data key in
cleartext that is base64 encoded. Once decoded, the plaintext key could be used
to decrypt the data/file with tools like openssl, outside AWS KMS.

More KMS features
Let's go through some more features of AWS KMS like encryption context,
grants, and key rotation.

Authenticated encryption with encryption context
Authenticated encryption provides confidentiality, integrity, and authenticity on
the encrypted data by using additional authenticated data (AAD). AWS
KMS supports AAD by the use of encryption context option with all the
cryptographic operations about symmetric CMKs. Encryption context is used
to introduce additional contextual information about the data being encrypted
and takes the form of comma-separated set of key-value pairs (key1=value1,
key2=value2).

When the encryption context option is used during encryption, the key-value
pairs get cryptographically bound with the ciphertext in such a way that the
same encryption context is required for successful decryption of the data. The
key-value pairs can appear in any order in the encryption context, but they are
case-sensitive.
At this point, we will assume that there exists a CMK (with an alias bpb479).
IAM user- key-user1 has been granted kms:Encrypt and kms:Decrypt
permissions (as defined in Table 4.3). Additionally, AWS CLI has been
configured to use the profile of key-user, which has been configured with the
user credentials of key-user1. Refer to Table 4.3 as follows:

IAM User Name IAM Policy Permissions KMS Key Policy
Role

AWS CLI Profile

key-user1 Custom policy kms.Decrypt,
kms:
DescribeKey,
kms: Encrypt

Key user key-user

Table 4.3: IAM policy permissions for encryption and decryption

The following shows how to add the encryption context with the encrypt
command:

$ aws kms encrypt --key-id "alias/bpb479" \

--profile key-user \

--plaintext fileb://samplefile.txt \

--query CiphertextBlob --output text \

--encryption-context"country=India,state=WB" | base64 -d >
samplefile.enc

To successfully decrypt the contents of the samplefile.enc, we can supply the
same encryption context during decryption, as follows:

$ aws kms decrypt --key-id "alias/bpb479" \

--profile key-user \

--ciphertext-blob fileb://samplefile.enc \

--query Plaintext --output text \

--encryption-context"state=WB,country=India" | base64 -d

If the same encryption context is not supplied during decryption, AWS CLI
issues the following error – An error occurred
(InvalidCiphertextException) when calling the Decrypt operation:.

KMS grant
In addition to the key policies and optional IAM policies, KMS grants provide
a very flexible access control mechanism. Normally, the KMS grants are used
to provide temporary permissions to the AWS principals to use CMKs. Grants
can be easily attached and detached to/from a CMK, and they control access to
a single CMK. Moreover, a grant can be used to allow access to the grant
operations and cannot be used to deny access.

Key rotation
The rotation of the key material in a CMK is very important to maintain perfect
forward secrecy. Cryptographic best practices disapprove the extensive reuse of
encryption keys, so that if the latest key gets compromised, it has the potential
to expose only a small portion of the encrypted data, thereby making sure that
the future security mistakes do not threaten the past secrets.
The rotation of CMKs can be done in the following two ways:

We can manually rotate the keys by creating a new customer managed
CMK and make the changes to the applications that refer to this CMK
using the key ID or key aliases. If the key alias is used, then we can
ensure minimal changes to the application by keeping the alias of the new
CMK to be the same as the old one (after changing the key alias of the
old CMK, of course). However, the challenge is with the data that has
been encrypted by the old CMK, which now might have to be decrypted.
In this case, we need to take extra measures to ensure that the old CMKs
are not deleted and are used to decrypt the old data. Manual rotation is
effective in controlling the rotation schedule of the CMKs.
We can enable the automatic key rotation for an existing customer-
managed CMK. With this option, AWS KMS generates new
cryptographic material for the CMK every year. Moreover, KMS does not
delete any rotated key material and saves these in perpetuity (unless the
CMK is deleted). This means, any data that had been encrypted with the
older key material can still be decrypted. Automatic key rotation is not
supported for asymmetric CMKs, CMKs in the custom key stores and
CMKs with the imported key material. The only option for such CMKs is
manual rotation.

AWS CloudHSM

When it comes to key management and encryption at an enterprise scale, a
typical enterprise will store the encryption keys in a central key management
service (like AWS KMS). A more complex enterprise with stringent regulatory
and security compliance requirements may use the key hierarchy or a
hardware security module (HSM). HSM is a special tamper proof hardware
device that safeguards and manages the digital keys and helps perform various
cryptographic functions, including encryption/decryption, message signing,
Digital Rights Management (DRM), etc.
AWS CloudHSM is a managed Hardware Security Module service on the AWS
cloud. The service can be used for secure key storage and high-performance
cryptographic operations which meets regulatory compliance requirements for
data security.
The following are some of the significant features of AWS CloudHSM that
makes it an easy choice for the enterprises with complex and validated
cryptographic requirements:

AWS CloudHSM offers dedicated, single tenanted access to FIPS 140-2
Level 3 validated modules. FIPS 140-2 Level 3 is a standard that adds the
requirements for physical tamper-resistance and identity-based
authentication for the module, thereby making HSMs attack proof.
AWS CloudHSM can be integrated with the applications using industry-
standard APIs like PKCS#11, Java Cryptographic Extensions (JCE),
and other libraries.
AWS CloudHSM is a fully managed service with automated hardware
provisioning, patching, high availability, and backups.
AWS CloudHSM allows easy migration of the digital keys stored in AWS
CloudHSM to the other commercial HSM solutions.
AWS CloudHSM creates a CloudHSM cluster which can contain multiple
HSMs spread across more than one availability zone (AZ) in a region,
thereby allowing the enterprises to easily scale their HSM capacity
through on-demand addition or removal of HSMs to/from the AWS
CloudHSM cluster.
AWS CloudHSM provisions HSMs within the customer's VPC for better
protection and isolation.
AWS CloudHSM has an hourly fee for each HSM that is provisioned
(until the HSM is terminated). There are no upfront costs.

Amazon S3
Amazon S3 is a fully managed, serverless, planet scale object storage service
that features high durability, availability, and performance. Amazon S3
supports protection of the data, both in transit and at rest. In order to protect the
data in transit, secure protocols like Secure Socket Layer (SSL)/Transport
Layer Security (TLS) can be used along with Amazon S3. Client-side
encryption can also be employed to protect the data in flight, by encrypting the
data at client side before pushing it to the wire. With client-side encryption, the
customers are responsible for managing the encryption process, keys, and
choice of encryption tools. To protect the objects at rest, Amazon S3 supports
various server-side encryption options. Each such option essentially employs
envelope encryption and stores the encrypted objects. Let's take a closer look
into the server-side and client-side encryption support available with Amazon
S3.

Server-side encryption
For protecting the objects at rest, Amazon S3 provides server-side encryption
where the objects are encrypted before being saved to the physical disks in the
Amazon data centers. When the objects are downloaded from Amazon S3, they
are decrypted transparently.
For server-side encryption (SSE) of the objects, Amazon S3 provides the
following three options, which can be chosen during the creation of a bucket or
during copying of an individual object into S3:

SSE with Amazon S3 managed keys (SSE-S3): With SSE-S3 option,
each object is encrypted with a unique AES-256 bit key, and for
additional security, envelope encryption is employed, that is, the key
itself is encrypted with a master key that is rotated at regular intervals.
The following command can be used with AWS CLI to leverage the SSE-
S3 option for an object (named sample.txt) copied into a bucket (named
bpb-bucket):

$ aws s3 cp ./sample.txt s3://bpb-bucket --sse AES256

Figure 4.9 shows how to enable the default encryption (Create Bucket |
Default Encryption) with the SSE-S3 option during the creation of a
new bucket from AWS Management Console. This would ensure all new

objects stored in the bucket to be encrypted by default with the SSE-S3
option. Refer to figure 4.9 as follows:

Figure 4.9: Enabling default bucket encryption with SSE-S3 option

SSE with CMKs stored in AWS KMS (SSE-KMS): With the SSE-
KMS option, we (customers) can select either AWS managed CMK or
customer managed CMK residing in AWS KMS. This option has some
additional benefits and costs as compared to the SSE-S3 option; for
example, the key usage audit trails are available with this option. With
SSE-KMS, Amazon S3 Bucket Keys could be used to decrease the
requested traffic from Amazon S3 to AWS KMS, thereby reducing the
cost of the encryption. Basically, AWS KMS generates a bucket level key
that is used to create the unique data keys for objects in the bucket. The
bucket key has a time limited lifespan within Amazon S3 and is reused,
thereby, reducing the number of cryptographic requests to AWS KMS.
The following commands can be used with AWS CLI to leverage the
SSE-KMS option for an object (named sample.txt) copied into a bucket
(named bpb-bucket). The first command uses the SSE-KMS option with
AWS managed CMK and the second command uses the SSE-KMS option
with customer managed CMK (with a key alias – bpb479). Of course,
instead of the key alias, we could also specify the customer managed
CMK ARN to identify the sse-kms-key-id. Look at the following
commands:

$ aws s3 cp ./sample.txt s3://bpb-bucket --sse aws:kms
$ aws s3 cp ./sample.txt s3://bpb-bucket --sse aws:kms \
--sse-kms-key-id "alias/bpb479"

Figure 4.10 illustrates how to enable the default encryption on a bucket
with the SSE-KMS option, as follows:

Figure 4.10: Enabling default bucket encryption with SSE-KMS option

The following permissions are required to upload/download the Amazon
S3 objects encrypted with AWS KMS CMK: kms:Encrypt, kms:Decrypt,
kms:GenerateDataKey, and kms:DescribeKey. AWS Signature version 4
must be used when uploading or accessing the objects encrypted with the
SSE-KMS option (AWS SDK can be used for this purpose). All GET and
PUT requests for the objects secured by SSE-KMS must be made over
SSL/TLS.
SSE with Customer provided keys (SSE-C): With the SSE-C option,
we (or customers) are responsible for managing the lifecycle and security
of the encryption keys. Amazon S3 manages the encryption of the objects
using the keys provided by the customers (AES-256) before writing the
objects to the disks and the decryption of the objects when they are
accessed or downloaded. Amazon S3 does not store the encryption keys,
and as such, the customers need to maintain the mapping of the data and
the key that was used to encrypt it. All requests must be made over
HTTPS when using the SSE-C option. The following is a sample
command to copy an individual object to an Amazon S3 bucket with
SSE-C option (Note that, both sse-c (with value AES256) and sse-c-
key (non base64 encoded key) options will have to be used):

$ aws s3 cp <source-file> s3://<bucket-name> \

--sse-c AES256 \
--sse-c-key<generated non base64 encoded key>

The easiest way to enable the encryption on objects is to enable the server-side
default encryption on the bucket. This ensures, all new objects placed in the
bucket are encrypted by default. On the other hand, the individual objects can
also be encrypted explicitly on being pushed to the bucket.
Now, let's consider a situation where we have created a bucket in Amazon S3
with the default encryption option selected as SSE-S3. However, while copying
the individual objects to the bucket (using AWS CLI or otherwise), we start
using a different option (like SSE-KMS). The option specified with the
individual object takes precedence.
The server-side encryption option that has been used to encrypt an object could
be easily verified by checking the object properties (Properties | Server-side
encryption settings).

Client-side encryption
Client-side encryption can serve as the security of objects in transit. With this
strategy, we (or customers) can encrypt the data/objects before sending the
same to Amazon S3. The decryption of the objects also takes place after these
have been downloaded from Amazon S3. There are essentially two options for
enabling the client-side encryption, which are as follows:

Use a CMK stored in AWS KMS
In this case, while uploading an object to S3, we can make a request to
AWS KMS for a symmetric data key by passing the key-id of an existing
CMK. In response, we will get a plaintext version of the data key which
is used to encrypt the data/object and an encrypted version of the same
data key which can be uploaded to Amazon S3 as object metadata.
During decryption, we can first download the encrypted object from
Amazon S3, along with the object metadata that contains the encrypted
version of the symmetric data key. Then, we can send a request to AWS
KMS to decrypt the encrypted version of the data key by passing the
cipher blob (from object metadata) and the CMK key-id. In response,
AWS KMS will send the plaintext version of the data key, which should
be used to decrypt the encrypted data/object.

Use a custom master key which is stored and managed outside AWS
Here, we provide a client-side master key (both symmetric and
asymmetric keys are supported) to the Amazon S3 encryption client
(supported by AWS SDK). This client uses the custom master key to
encrypt the one-time used data keys that it generates locally to encrypt
each object. The client then uploads the encrypted data key and its
material description (to determine which client-side master key to use
during decryption) as part of the object metadata. The client also uploads
the encrypted data to Amazon S3 and saves the encrypted data key as
object metadata (x-amz-meta-x-amz-key).
During decryption, the client downloads the encrypted object from
Amazon S3 along with object metadata and uses the material description
to determine which custom master key to use to decrypt the data key. The
client uses the master key to decrypt the data key and then uses the
decrypted data key to decrypt the object.

Amazon EBS
Amazon EBS provides a network attached, high performance block storage
service to the Amazon EC2 instances. The service leverages the AWS KMS
customer master keys (CMKs) to create encrypted boot/data volumes,
snapshots, and volumes created from the encrypted snapshots. Cryptographic
operations occur on the servers that host the Amazon EC2 instances so as to
ensure both encryption at rest and encryption in transit (between an Amazon
EC2 instance and the network attached Amazon EBS storage).
EBS volumes can be encrypted by either enabling the encryption by default
(account level attribute) or by enabling the encryption during the creation of
the volume. The default region specific CMK used for encryption is the AWS
managed CMK (identified by key-alias: alias/aws/ebs). However, we can
change these default settings to use a symmetric customer managed CMK of
our choice. The following AWS CLI commands can be used to do each of the
following:

1. Enable encryption by default with the default EBS encryption key: $ aws
ec2 enable-ebs-encryption-by-default

2. Modify the default EBS encryption key to point to a customer managed
CMK identified by key alias alias/bpb479:

$ aws ec2 modify-ebs-default-kms-key-id --kms-key-id

alias/bpb479

3. Reset the default EBS encryption key:

$ aws ec2 reset-ebs-default-kms-key-id

4. Disable encryption by default:

$ aws ec2 disable-ebs-encryption-by-default

Note that, kms-key-id could also be specified with the key ID or CMK ARN or
alias ARN.
This account level attribute could also be enabled by visiting the following path
– Amazon EC2 Console | EC2 Dashboard | Account Attributes (settings) | EBS
Encryption | Click on Manage. Then, we will enable the encryption and select
the default encryption key. Refer to figure 4.11 as follows:

Figure 4.11: Enabling default encryption of EBS volumes

For enabling the encryption during the creation of a new empty volume (in
AWS Management Console), all we need to do is check the Encryption
checkbox and select the Master Key (figure 4.12). This master key could be
AWS-managed CMK or customer-managed CMK, as shown in figure 4.12, as
follows:

Figure 4.12: Selection of master key to be used for EBS encryption

With AWS CLI, the following sample commands could be used to do the
following:

1. Create an encrypted volume with the default EBS encryption key:

$ aws ec2 create-volume --volume-type gp2 \

--size 8 --encrypted \
--availability-zone ap-south-1a

2. Create an encrypted volume with the customer managed CMK identified
by key ID, key alias, key alias ARN, or key ARN:

$ aws ec2 create-volume --volume-type gp2 \

--size 8 --encrypted \
--kms-key-id alias/bpb479 --availability-zone ap-south-1a

By default, if the volume is encrypted by a CMK, any snapshots that we make
from that volume and the volumes that we restore from those snapshots are
also encrypted by the same CMK.
There is no direct way to encrypt an existing unencrypted volume or snapshot.
The easiest way to encrypt them is by creating an encrypted snapshot or

restoring the unencrypted snapshot to an encrypted volume using AWS CLI or
AWS SDK.
When we choose an Amazon EBS volume to be encrypted, Amazon EBS sends
a generate data key (without plaintext key) request, specifying the key ID of
the CMK to be used. AWS KMS generates a new data key (AES-256), encrypts
it with the chosen CMK, and then returns the encrypted data key to Amazon
EBS. Amazon EBS stores this key along with the volume metadata.
At some point in time, this encrypted Amazon EBS volume is attached to an
Amazon EC2 instance which sends a decrypt request to AWS KMS and pass
the CMK key id and the encrypted data key. Amazon EBS also sends a create
grant request to AWS KMS, so that it can decrypt the data key. AWS KMS
decrypts the encrypted data key and sends the decrypted data key to Amazon
EC2. EC2 places the plaintext data key in memory of the hypervisor in order to
encrypt disk I/O to the volume. This plaintext data key resides in the
hypervisor memory as long as the volume is attached to the Amazon EC2
instance. This means, if the CMK gets deleted, the volume data can still be
encrypted/decrypted using the plaintext copy of the data key from the
hypervisor memory (unless it is detached).

Amazon DynamoDB
Amazon DynamoDB is a fully managed, serverless NoSQL database offering
from AWS. All user data stored in an Amazon DynamoDB table is encrypted at
rest, by default. In fact, just like Amazon S3 and other services, DynamoDB
uses the AWS KMS service for encrypting the data stored in the tables. For
protection of the data in flight, Amazon DynamoDB supports HTTPS based
requests through RESTful API calls, AWS CLI, or AWS SDK. In addition, we
may choose to use client-side encryption (CSE) before sending the data to the
table.

Server-side encryption
Amazon DynamoDB offers three options to encrypt the data stored in the
tables. These options are available during the creation of the table. On "Create
DynamoDB Table" page (AWS DynamoDB Console), we can uncheck the
"Use default settings" option under "Table Settings" and select the SSE
encryption option under "Encryption At Rest" section. Refer to figure 4.13 as
follows:

Figure 4.13: Server-side encryption in DynamoDB

By now, we already know what these options stand for. The default option uses
AWS owned CMKs and takes effect if no option is explicitly selected. The
other two options are encrypting the data with AWS managed CMK and
customer managed CMK.
When the encrypted tables are accessed, Amazon DynamoDB decrypts the
table data transparently. This means, all queries on the table data works
seamless on the encrypted data. Moreover, we can change the SSE options for
encryption at any time. Objects like DynamoDB streams, global tables, and
backups that are related to an encrypted table are also encrypted.

Client-side encryption
Amazon DynamoDB supports the client-side encryption which offers end-to-
end (from source to storage) protection of data. Typically, we can use
DynamoDB Encryption Client, an open-sourced software library licensed
under Apache 2.0 for this purpose. This library is available in Java and Python
and these implementations are interoperable. DynamoDB Encryption client
transparently encrypts and signs the table items (to be specific, attribute values
are encrypted, and signature calculated) when we call PutItem operation and
verifies and decrypts the items when we call GetItem operation on the table.
Note that, the primary and sort key (if present) are not encrypted, and we
should not store sensitive data in these fields.

DynamoDB Encryption Client provides several cryptographic materials
providers (CMPs). A CMP is the component that gathers encryption and
signing keys which are used in turn, to encrypt and sign the table items. We
could use Direct KMS Materials Provider which uses AWS KMS CMK to
protect the table items. In fact, a Direct KMS CMP generates unique
encryption and signing keys for each item; thus, it has a tighter integration with
AWS KMS for cryptographic operations.

TIP: We can use the following links to learn more about DynamoDB
Encryption Client Java and Python libraries:
Java: https://github.com/aws/aws-dynamodb-encryption-java
Python: https://github.com/aws/aws-dynamodb-encryption-python

Amazon RDS
Amazon RDS is a managed relational database service characterized by
support for various well known database engines and high availability,
scalability, and durability. With Amazon RDS, we can secure our data stored in
the RDS managed database instances. For the security of the data at rest,
Amazon RDS supports strong encryption with the AES-256 keys. For the
security of the data in motion, we can use SSL/TLS based connections with
database instances along with client-side encryption. Additionally, native
encryption features pertaining to particular database engines, like transparent
data encryption (TDE) supported by Oracle databases can also be employed.

Server-side encryption
Amazon RDS supports server-side encryption (or encryption at rest) of the data
for all (supported) database engines and storage types, by leveraging AWS
KMS customer master keys (CMKs). We can use either AWS managed CMK
(default option) or CMK, for the encryption. Enabling the encryption and
choice of the master key can be made during the creation of the database
instance and cannot be changed or modified later. To encrypt a database
instance, we need to check Enable Encryption and select a Master key under
the Additional Configuration section on the Create database page. Refer
to figure 4.14, as follows:

https://github.com/aws/aws-dynamodb-encryption-java
https://github.com/aws/aws-dynamodb-encryption-python

Figure 4.14: Server-side encryption in RDS

Some of the limitations associated with the RDS encryption are as follows:

RDS encryption is not supported for a few DB instance types like
General purpose (M1), Memory-optimized (M2), and burst capable (T2).
The encryption cannot be disabled for a database instance, once it is
enabled.
An encrypted database cannot be unencrypted. However, the data can be
exported from an encrypted database instance and imported into an
unencrypted one.
A snapshot of an encrypted database instance must be encrypted with the
same master key as the database instance.
The encrypted read replicas in the same region as the database instance
must be encrypted with the same CMK as the database instance.
The creation of the encrypted snapshot of an unencrypted database is not
possible.
In order toTo copy an encrypted snapshot from one region to another, the
CMK of the destination region must be specified.

Client-side encryption
To perform client-side encryption, we can use AWS Encryption SDK in the
application code. Encryption SDK basically generates the data key (using AWS
KMS) and gets a plaintext data key, as well as an encrypted version of the same
key. The plaintext data key is used to encrypt the column values (and then

deleted) and the encrypted data key is stored along with the encrypted column
value. The final encrypted data composed of the encrypted column value and
encrypted data key is stored in the database. Encryption SDK can also be used
for authenticated encryption by performing additional integrity and
authenticity checks with the use of encryption context.

Establishing encrypted database connection
To protect the data in motion, Amazon RDS supports the SSL/TLS encrypted
secure connection for the following database engines – MySQL, MariaDB,
SQL Server, Oracle, or PostgreSQL. Each database engine has its process for
implementing the SSL/TLS connection. The SSL/TLS protocols can still be
used if we are using Amazon RDS Proxy (a managed proxy).

Amazon Macie for data loss prevention
Amazon Macie is a fully managed, machine learning powered, sensitive data
discovery, and classification service that helps to implement the Data Loss
Prevention (DLP) solutions. Currently, Amazon Macie can detect sensitive
data and leakage from the Amazon S3 buckets. It can be easily integrated with
AWS Organization to provide delegated administration and visibility at the
organization level. It provides a dashboard view with key controls and metrics
and visibility across all accounts and buckets. Figure 4.15 shows how a typical
Amazon Macie dashboard (Summary menu on the left pane of Amazon Macie
Console) looks like, as follows:

Figure 4.15: Amazon Macie dashboard in Amazon Macie Console

Amazon Macie checks the following:

Public accessibility of the buckets.
Encryption status of the buckets.
How the buckets and objects are shared with the other users or accounts
by evaluating the buckets policies and ACLs to determine the effective
permissions set.

The policy findings are published to Security Hub and CloudWatch Events. For
the long term storage of the data discovery results, we can configure an S3
bucket from Amazon Macie Console.

Sensitive data discovery job
To discover sensitive data, Macie uses managed data identifiers that uses
machine learning (ML) and pattern matching to detect the sensitive data types.
These include multiple types of PII (full name, birth date, passport number,
etc.) and PHI data. These data identifiers are automatically used to analyze the
data.
We can create a discovery job in Amazon Macie to analyze the S3 buckets for
the sensitive data and classify them. The following steps are involved in the
creation of the job from the Amazon Macie Console:

1. Go to the Jobs menu (on the left pane) and click on the Create Job
button.

2. On the next page, select the S3 buckets that Macie will analyze and
review the selection, and click on Next.

3. Select the type of job – One time or Scheduled (daily/weekly/monthly) –
and click on Next. We can choose to create the inclusion and exclusion
filters that works on tags, filename extensions, etc.

4. Optionally, create and specify custom data identifiers (using regular
expressions) and click on Next.

5. Give the job a name and description and click on Next.
6. Review the job configuration and create the job by clicking on Submit.

Once the job is created, it goes into an Active (running) state. Once
completed, the job enters the Complete state. At this point, we can check the
findings (the Findings menu is on the left pane of the Amazon Macie
Console). These findings are categorized based on severity (low/medium/high)
and we can filter the findings based on severity. Refer to figure 4.16 as follows:

Figure 4.16: Amazon Macie findings

As we can see in figure 4.16, each finding points to the affected resource (S3
bucket and S3 object) with details pertaining to these resources. However,
these findings never reveal any sensitive information.

Conclusion
In this chapter, we learned how AWS provides an arsenal of services to ensure
the protection of data at rest and in transit. The fundamental key management
and storage service is AWS Key Management Service (KMS). AWS KMS, in
turn, uses secured and tamper-proof hardware security modules (HSMs) to
store the keys and key materials. Most of the other services like Amazon S3,
Amazon EBS, Amazon RDS, Amazon DynamoDB, leverage AWS KMS for
securing the data. Finally, we also introduced Amazon Macie, a managed
sensitive data discovery and classification service integrated with Amazon S3.
In the next chapter, we will cover Application security and discuss AWS's
significant security controls and services to minimize the application-layer
vulnerabilities and protect the applications from attacks.

CHAPTER 5
Application Security

Introduction
The realm of application security deserves an entire book. There are many nuts
and bolts to be tightened, doors to be locked, and keys to be hidden away from
the prying eyes. The responsibility of securing custom applications on Amazon
Web Services (AWS) falls primarily on the application owners. However, AWS
public cloud provides several services and features that can help offload
several responsibilities from the application. The application owners and
developers can essentially focus more on the application features and business
functionalities.

Structure
In this chapter, we will cover the following topics:

Securing APIs
AuthN/AuthZ with Amazon Cognito
Securing web applications hosted on Amazon S3 and CloudFront
Externalizing secrets and configuration parameters
Web Application Firewall
Securing applications with load balancer

Objectives
The objective of this chapter is to introduce the major areas of application
security and how AWS can help in securing the application layer. We'll learn
about the various ways in which we can protect APIs published on Amazon
API Gateway. We'll also learn how Amazon Cognito can help in establishing
the sound authentication and authorization scheme for the applications.
Subsequently, we will attempt to grasp the details of securing the highly
scalable and high-performance web applications using Amazon CloudFront

and Amazon S3. We'll learn how to externalize the application secrets and
configuration parameters by storing these in AWS Secrets Manager and AWS
Systems Manager Parameter Store. Finally, we'll take a quick tour of AWS
Web Application Firewall (WAF) and how it can help to secure the web traffic.

Securing APIs
Security of APIs is of great importance to any enterprise, primarily because
APIs can help open new revenue channels, augment customer engagement, and
increase collaboration with partners and other ecosystem players to expand the
business. Furthermore, APIs expose resources, assets, and services to either
internal or external clients. Amazon API Gateway is a highly available,
managed service which can help in creating, publishing, maintaining, securing,
and monitoring the APIs deployed on AWS cloud at scale. It supports REST,
HTTP, and WebSocket APIs. Let's look at some of the security features
available in API Gateway to protect these APIs.

API authorization
Once an API is staged or published on Amazon API Gateway, it becomes
accessible with the default execute-api endpoint. This endpoint has the
following format:

https://<api-id>.execute-api.<region-

code>.amazonaws.com/<stage>/<resource>

However, we must decide on 'who' can access this endpoint and 'which'
resources or methods of the API can they access. The answer to this question is
very significant as it has a direct impact on the security of the API. There are
several authorization strategies that the companies incorporate. For example, a
very common strategy is to have the API clients authenticate themselves
against an Identity Provider (like PingIdentity, Okta, etc.), and in return, get a
signed bearer token or access token. Subsequently, the API clients are required
to pass this access token in the request header during an API call. The API
gateway must verify this token and retrieve the authorization scopes granted
with the token and provide access to the appropriate API resources based on
the scope. API Gateway provides several types of authorizers (like IAM,
Lambda authorizer, etc.) which, when associated with the APIs, can help
implement the authorization schemes.

IAM Authorizer
The IAM policies could control the access to the API resources and methods in
Amazon API Gateway. Such policies could be used to control the access to
both the API management (create, deploy, manage) component and the API
execution component of API Gateway. This could be a very effective strategy
for private APIs that are not exposed outside the Virtual Private Cloud
(VPC). This is so because controlling the access to the API resources/methods
via the IAM authorizer involves the distribution of either long-term or short-
term (AWS Security Token Service or STS based) credentials and warrants the
use of AWS Signature Version-4 for signing the requests.

To learn more about the AWS Signature Version 4 process, visit the
following link: https://docs.aws.amazon.com/general/latest/gr/signature-
version-4.html

An exciting feature of IAM-based authorization is that the IAM policies could
be designed to be very granular. Let's check a sample IAM policy that allows
access to retrieve the details of a customer, by customer ID but denies access to
the creation of a new customer in the DEV stage. Now, when this permission
policy is attached to an IAM identity (like user, group, role), that identity will
effectively have the following permissions:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": "execute-api:Invoke",

"Resource": [

"arn:aws:execute-api:<region-code>:<account-id>:<api-

id>/DEV/GET/customer/*"

]

},

{

"Effect": "Deny",

"Action": "execute-api:Invoke",

"Resource": ["arn:aws:execute-api:<region-code>:<account-

id>:<api-id>/DEV/POST/customer"

]

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

}

]

}

At this point, we assume that this sample IAM policy is associated with an
IAM user (say api_user) who has the programmatic access and holds the
AWS access key ID and secret access key.
To associate the IAM authorizer with an API method, we just need to select the
method and under the Method Request | Settings section, select AWS IAM
from the Authorization drop-down and post the changes by clicking on the
check mark button. In figure 5.1, AWS IAM authorization is enabled for the
GET method of /customer/{id} resource, shown as follows:

Figure 5.1: Enabling IAM authorizer with API method

Finally, we will use Postman to check if api_user, who has been assigned the
IAM policy, is able to invoke the GET method on the /customer/{id} resource.
In Postman, we will have to select AWS Signature under Authorization
Type. The following configuration needs to be made, pertaining to the AWS
Signature authorization as well (refer to figure 5.2):

AccessKey: <AWS access key ID of api_user >

SecretKey: <AWS secret access key of api_user>
Advanced/AWS Region: <region-code>
Advanced/Service Name: execute-api

Essentially, Postman uses AWS Signature Version-4 to sign the request and
send it to the API endpoint. At the endpoint, the IAM policy is evaluated for
the user whose credentials have been used to sign the request and the access is
either granted or denied. In case of api_user, the access will be granted to the
GET method of the /customer/{id} resource. Refer to figure 5.2 as follows:

Figure 5.2: Using Postman to call an API endpoint protected by IAM authorizer

If we attempt to invoke the GET method on the /customer/{id} resource,
without the appropriate AWS credentials, the access will be denied and API
Gateway will return HTTP 403 (Forbidden), by default.
Amazon API Gateway also supports the resource based IAM policies, which
could be used to securely invoke the APIs in the following scenarios:

Cross account API access
API access from a particular IP address range or CIDR block
Access from specified Virtual Private Clouds (VPC) or VPC endpoints
The resource-based policies work in tandem with identity policies to
secure the API access

Lambda Authorizer
The Lambda authorizers are an Amazon API Gateway feature that can help
create custom authorization schemes for the APIs using the Lambda functions.
A Lambda authorizer essentially attempts to establish the identity of the caller,
and then either allow or deny the access to the API resources. The Lambda
authorizer could be used to implement the authorization strategies like OAuth,
Security Assertion Markup Language (SAML), or any custom scheme.
There are two types of Lambda Authorizers that can be used with REST APIs,
which are as follows:

A Token authorizer receives the caller's identity as a token that is passed
by the caller in the request header (like a bearer token passed in
Authorization header). This token is available under
event.authorizationToken in the Lambda authorizer event structure.
Finally, the authorizer returns an IAM policy to the API Gateway which
either allows or denies the access to the requested resource.
A Request authorizer receives the caller's identity as a combination of
request headers, query string parameters, API Gateway context variable,
or stage variables. This type of authorizer also returns an IAM policy to
the API Gateway.

Figure 5.3 provides a schematic flow of how a Lambda authorizer works hand-
in-hand with API Gateway to verify the identity of the caller and authorize
access to the API resources. In this flow, we assume that the API user gets
authenticated by an identity Provider which provides an access token, as
shown in figure 5.3 as follows:

Figure 5.3: Working of a Lambda authorizer

The following are the basic steps involved:

The user logs in with an identity provider by supplying credentials like
user id/password/some form of multi-factor authentication (MFA), etc.
The identity provider authenticates the user and sends back a signed
access token which carries the list of scopes that the user is authorized to
access. A very widely used token standard is JSON Web Token, which is
used as a bearer token.

To know more about JSON Web Token (JWT), visit the following
site: https://jwt.io/introduction

The API user now places this access token in the Authorization header of
the HTTP request and sends the same to the API Gateway. The header
would look somewhat like the following:

Authorization: Bearer <token>

API Gateway receives the request, and with the Lambda authorizer
associated to the requested API, sends the token to the Lambda
authorizer.
The Lambda authorizer validates this token with the identity provider and
subsequently generates an IAM policy to either allow or deny access to
the requested API resource. A generated IAM policy looks somewhat
like the following:

{

"Version": "2012-10-17",

"Statement": [

{

"Action": "execute-api:Invoke",

"Effect": "Allow",

"Resource": "<api-resource-arn>"

}

]

}

Lambda authorizer responds back to the API Gateway with this generated
IAM policy.

https://jwt.io/introduction

API Gateway evaluates the IAM policy and returns a HTTP 401
(Unauthorized) to the API user if the policy denies access, or forwards
the request to the back-end API resource, if the policy allows access.
Finally, the back-end API resource responds, and the same response is
passed to the API user.

Now that we have a basic understanding of how a Lambda authorizer works,
let's get our hands dirty with some code (in Node.js). We assume that the Node
along with Node Package Manage (NPM) has been installed. We will start by
creating a Node project and installing the jsonwebtoken module as
dependency. We can use the following command for the purpose:

$ npm init -y && npm install --save jsonwebtoken

We will develop a RS256 (Rivest-Shamir-Adleman [RSA] signature with
SHA-256) based JWT authorizer. Since the asymmetric cryptographic
algorithm like RSA will be used, there is a private-public key pair involved.
The identity provider will generate this key pair and safely store the private
key (which is a confidential key). This private key will then be used to sign the
JWT tokens. On the other hand, the public certificate, which has the public key
embedded in it, could be used to verify the JWT token. There are various ways
in which this asymmetric strategy could work. For example, a more dynamic
arrangement would be to have the authorizer connect with a JSON Web Key
Set (JWKS) endpoint of the identity provider and extract the public certificate
based on the 'kid' (key identifier) field present in the JWT token. However, to
keep things simple, we will assume that this public certificate is shared by the
identity provider, and this is used by the Lambda authorizer to verify the
signed JWT tokens.
To quickly generate a key pair (for testing purpose), we can use the OpenSSL
commands. To generate Privacy Enhanced Email (PEM) format private keys
and self-signed certificates, we can leverage the following commands in
Linux; the first command creates an RSA-2048 private key, named
private.key and a certificate signing request (CSR), named client.csr; the
second command uses the private key and the CSR to create a self-signed
public certificate, named public.key:

$ openssl req -newkey rsa:2048 \

-nodes -keyout private.key \

-out client.csr

$ openssl x509 -signkey private.key \

-in client.csr -req -days 365 \

-out public.key

With the private and public key (essentially a certificate with public key) pair
generated, let's focus on the following Lambda function:

/*************** File: index.js **************/

/* rs256_based_token_authorizer- Sample RS256 based authorizer */

const jwt = require('jsonwebtoken');

const fs = require('fs');

const UNAUTHORIZED = 'Unauthorized';

// Token Authorizer for JWT

exports.handler = async(event)=>{

const BEARER = "Bearer "; // Authorization type = Bearer

console.log("Event >> ", event);

var token = event.authorizationToken;
if(token && token.startsWith(BEARER)){

console.log("Bearer token used");

token = token.substring(BEARER.length); // extract JWT token

}

// Public certificate could be fetched from S3, KMS or JWKS

endpoints

var cert = fs.readFileSync('./keys/public.key');

var response = {};

try{

var decoded = jwt.verify(token, cert, {algorithms:
['RS256']});
console.log("Decoded token >> ", decoded);

response = generate_iam_policy(
decoded.uid,

'Allow',

event.methodArn);

return response;

}

catch(err){

console.error("Error >> ", err);

throw UNAUTHORIZED;

}

};

var generate_iam_policy = (principal, effect, resource)=>{

let response = {};

response.principalId = principal;

let policyDocument = {};

policyDocument.Version = '2012-10-17';

policyDocument.Statement = [];

let statement = {};

statement.Action = 'execute-api:Invoke';

statement.Effect = effect;

statement.Resource = resource;

policyDocument.Statement[0] = statement;

response.policyDocument = policyDocument;

return response;

};

This Lambda function (named rs256_based_token_authorizer) could now
be deployed using either AWS Lambda console or CLI. Figure 5.4 shows how
the Lambda deployment structure would appear. Note, the public key is baked
into the deployment under the keys folder for the sake of simplicity. This
might not be the optimal solution for all the scenarios. Refer to figure 5.4 as
follows:

Figure 5.4: Lambda deployment folder structure

The Lambda function does the following—it extracts the bearer token from the
incoming event, which appears under event.authorizationToken.
Subsequently, it loads the public certificate file and uses the same to verify the
JWT token. In addition to verifying the signature, the token is also checked for
expiry (every JWT token should have an expiry timestamp assigned in the exp
field). Once the token is successfully verified, an IAM policy is generated with
the effect of Allow and resource equal to the methodArn field available in the
Lambda event. Finally, this policy is returned to API Gateway for evaluation.

The actual authorization process could be more complex. For example, the
Lambda function might have to extract the authorized scopes assigned to the
JWT token (under the scope field), lookup the API resources mapped to these
scopes from a persistent store and then generate the IAM policy.
Once the Lambda function is successfully deployed, it can be registered as a
Lambda authorizer for an API, that needs to be protected. All we need to do is
select the API from the API Gateway console and click on the Authorizers
option on the left navigation panel. On the Authorizers page, click on the
Create New Authorizer button. Subsequently, on the Create Authorizer
page (refer to figure 5.5), we will specify the name, type (Lambda), Lambda
function ARN, Lambda event payload (Token), Token Source (Authorization
header), Caching, etc., and click on the Create button. If Lambda Invoke Role
was not specified on the Create Authorizer page explicitly, then during the
creation process, we will be asked to grant permission to API Gateway to
invoke the Lambda function, which should be granted. Refer to figure 5.5 as
follows:

Figure 5.5: Create an authorizer in API Gateway from AWS Management Console

Once the Lambda function has been registered as an authorizer for a selected
API, we can associate the methods of this API with the authorizer. To do that,
we need to select the particular API's method, and in the Method Request |
Settings section, click on the Authorization drop-down and select the
authorizer. Subsequently, we can deploy the API and test the authorizer, as
shown in Figure 5.6 as follows:

Figure 5.6: Enabling token authorizer for an API method

In practice, the access token (like JWT token) is generated by the identity
provider. However, for the purpose of testing the authorizer, we can generate a
JWT token using a simple Node.js code. We assume that a Node project has
been created and the dependencies (jsonwebtoken library) installed.
Additionally, the private key has been placed in the same folder as the
index.js file. The following is the content of the index.js file:

/********** File: index.js ************/

const jwt = require('jsonwebtoken');

const fs = require('fs');

const privateKey = fs.readFileSync('./private.key');

var token = jwt.sign({
uid: '<user-id>', // user identifier

scope: '<list of scopes>', // like admin,guest,etc.

exp: 1623863447 // epoch timestamp for token expiry

}, privateKey, {algorithm: 'RS256'});

console.log(token);

Now, we can execute this file locally using the following command:

$ node index.js

This generated token that appears in the console could be used with the
Authorization header of a request, that has been protected using the Lambda
authorizer. We could use Postman for testing the API. Figure 5.7 shows how
the Authorization header looks in Postman, as follows:

Figure 5.7: Using Postman to test an API endpoint protected by a Lambda authorizer

With the introduction of HTTP APIs in Amazon API Gateway, the Lambda
authorizers support a newer version (Version 2.0) of the payload format. The
authorizer payload format defines the request and response formats that are
sent and received by API Gateway to and from the Lambda function. HTTP
APIs do support the older version (Version 1.0) as well. However, REST APIs
currently support only Version 1.0 of the payload format version, and thus, we
have to use this version for compatibility with REST APIs. A notable
difference is in the response format. In Version 1.0, the response from the
Lambda authorizer was an IAM policy. However, in Version 2.0, the format is
much simpler. The following is an example:

{

"isAuthorized": true/false

}

Refer to the following link for relevant information around the payload
formats:
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-
lambda-authorizer.html

Cognito Authorizer
Amazon Cognito is a serverless offering that can act as an identity provider
(IdP) as well as an identity broker. When used as an identity provider, Cognito
could be used to create the user registry (known as user pool), manage
authentication, authorization, and provide access to the protected resources
(like APIs, databases, etc.). On the other hand, when used as an identity broker,
Cognito can use federated identities to authenticate the users against the third-
party identity providers through web federation or SAML federation, generate

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-lambda-authorizer.html

temporary access credentials, and provide access to the resources. Cognito
offers out-of-the-box integration with Amazon API Gateway and supports the
creation of Cognito authorizers which can authorize a user from the Cognito
user pool to access the APIs. We will take a closer look at Amazon Cognito in
a subsequent section.
Let us now check how to enable a Cognito Authorizer for REST API published
on Amazon API Gateway. We will assume that we already have a user pool
(named bpb479-pool) in Cognito with the following configurations made,
using the Amazon Cognito management console:

Name/Pool Name: bpb479-pool
Attributes:

Users can use a username or verified email address to sign-up/sign-
in
Email configured as a required attribute

Policies:

Provide a strong password policy
Allow users to sign themselves
Temporary password set by the administrator to expire in 7 days

MFA and verifications: MFA are disabled, and for everything else,
accept default settings
Message customizations: Accept default settings
Tags: Optionally provide a tag for the user pool
Devices: User device tracking disabled
App clients: Add an app client (note: Cognito always authenticates a
user against an application client)

App client name: bpb479-app-client
Accept default token expiration for Refresh, Access, and Id tokens
Uncheck Generate client secret
Auth Flows Configuration:

Check ALLOW_ADMIN_USER_PASSWORD_AUTH

For everything else, accept default settings

Triggers: Do not configure any workflow customization Lambda triggers

Figure 5.8 shows the General Settings page (in the Amazon Cognito
Management console) of the user pool, which displays the pool ID, as follows:

Figure 5.8: General settings of an Amazon Cognito user pool from AWS Management Console

The App client's general configuration is shown in Figure 5.9, as follows:

Figure 5.9: Cognito User pool app-client general configuration from AWS Management Console

Auth Flows Configuration setting is shown in Figure 5.10 as follows (note
that, Amazon Cognito automatically generates App Client Id for the
application client):

Figure 5.10: Cognito user pool auth flow configuration from AWS Management Console

The preceding settings for the user pool will ensure that upon sign-up, the
users receive an email with a one-time temporary password set by the admin,
which they will have to change during their first login.
We will also assume that a verified user (named user1) exists in this pool who
has already changed the first-time login password. Now, we will go to the API
Gateway Management console, select a REST API, and create a new
authorizer named bpb479-pool-authorizer (refer to Figure 5.11) by clicking
on the Authorizers option on the left navigation panel. Note that we have
selected the authorizer Type as Cognito and we have also selected the existing
user pool (bpb479-pool) and defined the Token Source as Authorization.
This typically means that the authorizer will extract the token from the
Authorization header of the request and validate against the selected Cognito
user pool. Refer to Figure 5.11 as follows:

Figure 5.11: Creation of a Cognito Authorizer in API Gateway

Next, we will associate this authorizer with one of the API methods. To do
that, we will select a specific method from Resources and in Method Request |
Settings | Authorization, we will select the existing user pool under
"Cognito user pool authorizers (refer to Figure 5.12). Once the
configuration is done, we will have to deploy the API and grab the staged
endpoint to test the authorizer. Refer to figure 5.12, as follows:

Figure 5.12: Enabling Cognito Authorizer for an API method from AWS Management Console

To get hold of the token that is generated by Cognito, when a user signs into
the user pool, we will use the AWS CLI's Cognito-IdP admin-initiated
authentication flow where a user could be signed-in by an administrator for
testing purposes. This is also the reason we have enabled the
ALLOW_ADMIN_USER_PASSWORD_AUTH flow for our app client. In practice,
however, Cognito SDK will have to be used to programmatically sign-in a user
to the Cognito user pool from the mobile or web applications. Additionally, the
ALLOW_ADMIN_USER_PASSWORD_AUTH flow helps to initiate the authentication
flow from the back-end applications (like Node.js or Java), also known as the
server-side authentication.
The following is the CLI command to initiate a sign-in for the existing user by
an administrator who has permissions pertaining to the AWS managed policy
AdministratorAccess. Note that this is not a secured option since we are
passing the password in plain text from the CLI console. We will use the
following option for testing purposes only:

$ aws cognito-idp admin-initiate-auth \
--user-pool-id ap-south-1_bmJfPvCR9 \

--client-id 220prl5876je0nr3qcrnl3cp5f \

--auth-flow ADMIN_USER_PASSWORD_AUTH \

--auth-parameters USERNAME=user1,PASSWORD=xxxxxxxx \

--region ap-south-1

Upon success, the preceding command returns a result in the following format:

{

"ChallengeParameters": {},

"AuthenticationResult": {

"AccessToken": "<access_token>",

"ExpiresIn": 3600,

"TokenType": "Bearer",

"RefreshToken": "<refresh_token>",

"IdToken": "<id_token>"

}

}

As is evident from the result, for a verified user, this command will return three
tokens – access token, id token, and refresh token. Amongst these, the id token
is the one that is used to authenticate the AWS services (like API Gateway)
and back-end applications. This is the token that we will include in the
Authorization header and pass along with our API request using Postman. As
shown in Figure 5.13, with the correct id token, we are able to gain access to
the API and get the response, as follows:

Figure 5.13: Using Postman to access an API endpoint protected by Cognito Authorizer

The id token is a JWT token and could also be prefixed by the Bearer
followed by a space.

JWT Authorizer
JWT Authorizer is a special out-of-the-box authorizer available with HTTP
APIs on Amazon API Gateway. This type of authorizer could be easily used as
part of OpenID Connect (OIDC) and OAuth 2.0 flows, which create JWT
based access tokens. These JWT tokens could be verified and validated by
JWT Authorizer, and the access could be allowed or denied to the API routes.
The authorizer configuration for a HTTP API is on a per route basis.
JWT authorizer typically works with the bearer tokens and supports an
identitySource that carries either the token itself or the token prefixed by
Bearer. We need to specify the Issuer URL of the identity provider during the
configuration of the authorizer. This URL is used during token verification, to
fetch the public key based on the kid field of the token payload.
Currently, the JWT authorizer supports the RSA based algorithms only.
Essentially, the authorizer fetches the token from the identity source and
decodes it. It then fetches the public key from the issuer's JWKS endpoint and
verifies the signature of the token along with the necessary validation of the
claims (like iss, exp, scope, etc.). the routes in an HTTP API could be
configured with scopes (authorizationScopes) and the JWT authorizer could
be used to verify if the token has at least one of the specified scopes. If any of
these validation steps fail, the access is denied.
Thus, a JWT authorizer can relieve us from the responsibility of developing a
custom JWT based authorizer if we use HTTP APIs. However, while using
REST APIs, we still need to create a JWT based authorizer on our own, just
like we created one under the Lambda Authorizer section.

Controlling Cross Origin Requests
Cross Origin Resource Sharing (CORS) is a security feature that is used to
restrict the cross-origin HTTP requests originating from the scripts running in
the browser. Cross origin refers to situations where the request is made to a
different domain/subdomain/protocol/port. CORS should be enabled for the
API resources that receive non-simple requests (for example, requests with
custom headers, etc.).

For a better understanding of simple and non-simple requests, visit the
following link:
https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS#simple_requests

In case of non-simple HTTP requests, the browser sends a pre-flight request to
API Gateway hosting the cross-origin resource to check if the actual request
will be permitted. This pre-flight request carries the Origin, Access-Control-
Request-Method, and Access-Control-Request-Headers headers and uses the
OPTIONS method. To support CORS, the API Gateway REST API resource
implements an OPTIONS method which helps in responding to the pre-flight
requests and carries the following response headers – Access-Control-Allow-
Methods, Access-Control-Allow-Headers, and Access-Control-Allow-
Origin.
For a non-proxy Lambda or HTTP integrations, the CORS related response
headers are configured as part of the method response and integration response
settings. On the other hand, for proxy integrations, the CORS response headers
against the OPTIONS request will need to be configured at the back-end service,
since the proxy integration does not return an integration response.
Let's check how we can enable the CORS support for one or all the methods on
a REST API resource from API Gateway Console.
First, we need to select the API and select the resource (or method) under this
API for which we'd want to enable the CORS support. If a resource is selected,
then CORS will be enabled for all the methods and sub-resources under that
resource. To enable CORS, we must select the resource, click on Actions and
select Enable CORS. Refer to figure 5.14, as follows:

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests

Figure 5.14: Enabling CORS for an API resource from AWS Management Console

On the Enable CORS page, we will specify the header values (refer to figure
5.15), in case we have any custom headers that needs to be specified in
Access-Control-Allow-Headers and the origin needs to be updated for
Access-Control-Allow-Origin (in this example, we have used
https://portal.example.com as the origin). Once done, we can click on the
Enable CORS and replace existing CORS headers button. Refer to figure
5.15 as follows:

https://portal.example.com/

Figure 5.15: Specify CORS headers in AWS Management Console

In the subsequent pop-up, we need to click on Yes, replace existing
values. At this point, API Gateway will create the OPTIONS method
automatically and add a MOCK integration to it along with the other changes.
Refer to figure 5.16, as follows:

Figure 5.16: Automatic creation of OPTIONS method by API gateway

To check if CORS was enabled successfully, all we need to do is go to the
Integration Response page of one of the methods under the resource selected
for CORS and check the response header under the Header Mappings section.
It should reflect the Access-Control-Allow-Origin header along with the
origin value set earlier (https://portal.example.com). Refer to figure 5.17, as
follows:

https://portal.example.com/

Figure 5.17: Checking if CORS has been enabled from Integration Response in API Gateway

Note that, we should not place the OPTIONS method under any authentication
control (including the API key), since this will lead to the failure of the pre-
flight requests.

Mutual TLS and client certificates
Mutual TLS and client certificates are used to improve the security posture of
the API based integrations. These can be used along with the other
authentication and authorization controls available in API Gateway. Mutual
TLS is applied to securely authenticate the API clients with API Gateway. On
the other hand, a client certificate is used to establish the API Gateway's
identity to the back-end system. Let's take a quick look at these one by one.

Mutual TLS
Mutual TLS (MTLS) warrants a two-way authentication between the client and
the server. Normally, with the HTTPS based communication, it is the client
that challenges the server's identity. However, in a two-way authentication,
both the client and the server challenge each other's identity. Typically, these
identities are represented by the X.509 certificates. Mutual TLS is very
common in the business-to-business (B2B) and Internet Of Things (IoT)
integrations. In API Gateway, we first need to create a custom domain in order
to enable the mutual TLS authentication.
The custom domain name is a powerful feature of API Gateway. It essentially
supports a set of APIs deployed in various stages to be mapped and be
accessible by a custom domain name, instead of the default execute-api based
domain names. This also enables us to hide the staging labels for each endpoint
and provide a clean and friendly URL to the API clients.
The domain can be created from the Custom domain names option on the left
navigation panel of the API Gateway console. Refer to figure 5.18 as follows:

Figure 5.18: Creation of "Custom Domain Name" in AWS API Gateway

On the Create Domain Name page, we will provide the domain name, opt for
TLS1.2 as the minimum TLS version (this is recommended) and turn on
Mutual TLS authentication. We should also provide the URI of the trust
store. The trust store is essentially an S3 bucket which carries a PEM formatted
file containing all the public certificates of the API clients which are trusted by
API Gateway. The following is an example of a trust store file containing two
public certificates (file: certificates.pem):

----BEGIN CERTIFICATE-----

<Certificate contents>

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

<Certificate contents>

-----END CERTIFICATE-----

On the same Create Domain Name page, we will also have to select a publicly
trusted server certificate issued by AWS Certificate Manager (ACM) which
is associated with the domain name. At this point, we will assume that we own
a domain and have an Amazon Route 53 hosted zone configured.
API Gateway presents this certificate to the API clients (figure 5.19). Note
that, mutual TLS can be enabled only for the regional endpoints pertaining to

the public APIs. Mutual TLS cannot be enabled for the private APIs. Refer to
figure 5.19 as follows:

Figure 5.19: Endpoint configuration for "Custom Domain Name" in AWS API Gateway

Once the custom domain name is created with MTLS enabled, we will take
note of the API Gateway domain name that appears under Custom Domain
Name | Configurations and create an A record in the existing Route53 hosted
zone. The record should have the following:

Name = <Custom Domain Name>

Value = <API Gateway Domain Name>

Finally, we will map the APIs and their stages, with the domain name under
Custom Domain Name | API mappings | Configure API mappings. Refer to
figure 5.20 as follows:

Figure 5.20: Configure API Mapping s for "Custom Domain Name" in AWS API Gateway

Once the custom domain name is established for accessing the APIs, the
default API endpoint should be disabled, as a best practice. This is so because,
these default endpoints present an additional attack surface area for the

coordinated attacks like DDoS. The following AWS CLI command could be
used to disable the default endpoint of a REST API and subsequently, the API
needs to be re-deployed for the changes to take effect:
$ aws apigateway update-rest-api \
--rest-api-id <API-Id> \
--patch-operations op=replace,path=/disableExecuteApiEndpoint,value='True'
Once the mutual TLS is enabled, any API client that does not present a trusted
certificate will not be able to access the APIs.

Client certificate
Amazon API Gateway can generate self-signed SSL certificates, which in turn
could be used by the HTTP back ends (including publicly accessible back
ends) to verify whether a request has originated from API Gateway.
Essentially, the AWS self-signed certificate acts as a means to identify Amazon
API Gateway.
The generation of a client certificate in API Gateway is very straight forward.
Select an API and click on Client Certificates from the navigation panel
on the left. Clicking on Generate Client Certificate generates the client
certificate which has a 6-letter identifier. Refer to figure 5.21 as follows:

Figure 5.21: Generation of a Client Certificate in Amazon API Gateway

Subsequently, we can click on copy on the certificate card and paste the
content in a .pem file. The content looks somewhat like the following:

-----BEGIN CERTIFICATE-----

<Certificate Contents>

-----END CERTIFICATE-----

To use the generated client certificate with an API, we will select the certificate
from the deployed stage of the API under the Client Certificate section in
the Settings tab in Stage Editor and click on the Save Changes button and
redeploy the API. Refer to figure 5.22 as follows:

Figure 5.22: Setting Client Certificate for a stage in Amazon API Gateway

On the API back end, to authenticate the client (API Gateway) based on SSL
certificate, we need to have access to the server-side PEM encoded private key
and a certificate that is signed by a trusted certificate authority (CA). AWS
does provide a list of supported authorities which includes VeriSign, GoDaddy,
etc.

Refer to the following link for the entire list of supported/trusted CAs:
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-supported-certificate-authorities-for-http-endpoints.html

The back-end HTTPS server should configure its identity store with this
private key and certificate. It should also add the PEM encoded client
certificate generated by API Gateway to its trust store. It must also be
configured to always request a certificate from the client and reject the request
if the client certificate is not trusted or invalid. This will enable a two-way SSL
between API Gateway and the back end. Thus, unless the request comes from
API Gateway along with trusted client certificate, the access to the back-end
server is denied, even if the back-end server's endpoint is publicly available.

Usage plan, API keys, throttling, and quota
Ideally, we should have a tight control over who calls our APIs, how many
times these can be called, and at what rate. This not only helps us monitor the
usage of the APIs (and thereby costs), but also to quickly find any abnormal
and overwhelming usages; for instance, during the ongoing DoS/DDoS
attacks. Amazon API Gateway provides various pro-active controls to
moderate the usage of APIs.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-supported-certificate-authorities-for-http-endpoints.html

The fundamental control is a usage plan that specifies who can access the API
stages and methods, and at what rate. An API key is used to identify an API
client and is associated with one or more usage plans and helps in
implementing metering for the associated API stages. The API keys are
essentially alpha-numeric values that can be distributed to the API clients.
However, the API keys should not be used as the only authentication and
authorization control for the APIs. They should be combined with the
authorizers for better security.
A usage plan can be used to define the throttling limits and quota limits. A
throttling limit defines the rate (requests per second) and burst that is applied to
each API key associated with the usage plan. A quota limit is defined as the
maximum number of API requests (associated with an API key), that can be
submitted in a specified duration of time (like day, week, month).
Let's use the API Gateway console to create a usage plan and associate it with
the API stages, and then generate an API key and link the key with the plan. At
this point, we will assume that we have a set of existing APIs on which we
want to apply the usage plan. We will also assume that these APIs have been
deployed in one or more stages. The following are the steps:

From the API Gateway console, select one of the APIs and subsequently
select Usage Plans from the left navigation panel and click on the
Create button.
Provide an appropriate name and description to the plan and define the
throttling and quota limits and click on the Next button. Note that, in this
example, (figure 5.23), we have defined the rate equal to 3 requests per
second and burst (size of bucket) equal to 50 requests under throttling
limits. The quota limit has been set as 1000 requests per month (this
count gets automatically reset the first day of every month). Refer to
figure 5.23 as follows:

Figure 5.23: Creation of a Usage Plan in Amazon API Gateway

On the next page, associate A the PI stages with the plan by clicking on
Add API Stage and selecting a specific API and stage. Note that, the
throttling limits could be applied to an individual method level by
clicking on Configure Method Throttling. Refer to figure 5.24 as
follows:

Figure 5.24: Associating API stages with a Usage Plan in Amazon API Gateway

Subsequently, on the next page, one can create an API key (or use an
existing one) and associate it with the plan. However, this can be done at
a later point in time as well. We will create the API key separately and
associate it with the plan. Thus, at this point, we will complete the
creation of the usage plan by clicking on the Done button.

Now, to create the API key, we will select API Keys and under Actions,
select Create API key.
On the subsequent page, we will provide an appropriate name and
description. At this point, we can choose whether to auto generate the key
or use a custom key and then click on Save. Refer to figure 5.25 as
follows:

Figure 5.25: Creation of API Key in Amazon API Gateway

Once the API key is created, we can associate it with a plan by selecting
the key and clicking on Add to Usage Plan. Refer to figure 5.26 as
follows:

Figure 5.26: Adding Usage Plan to an API key in Amazon API Gateway

Subsequently, we will select the usage plan (named bpb479-plan) which
will automatically fetch the API stages associated with the plan. Refer to
figure 5.27 as follows:

Figure 5.27: Association of API key with Usage Plan, API, and Stage in Amazon API Gateway

With these settings in place, the API clients will have to send the x-api-key
header along with every request and pass the value of the API key. In case this
header is not passed or if the incorrect API key is passed with the request, API
Gateway responds with HTTP 403 (Forbidden). If the number of requests
submitted by the API client exceeds the configured rate and burst or the quota
is exceeded, API Gateway responds with HTTP 429 (Too Many Requests).
In essence, these pro-active measures, to check the identity of the API clients
and the rate at which the requests are submitted over a short as well as long
period of time, stops the APIs from getting overwhelmed with requests during
a Distributed Denial of Service (DDoS) or similar attacks.

Protecting APIs with WAF
Nowadays, Web Application Firewall (WAF) has become a de-facto standard
for protecting the web applications and APIs from the common layer-7 attacks
like SQL injection, cross site scripting (XSS), and other vulnerabilities. API
Gateway has seamless integration with AWS WAF. We will briefly discuss
about AWS WAF in a subsequent section. In the event of an existing WAF
Access Control List (ACL) rule (named OWASP-Rules in figure 5.28), the

same could be selected in a particular API's stage editor, under the Settings
tab. Refer to figure 5.28 as follows:

Figure 5.28: Associating AWS WAF rules with a Stage in Amazon API Gateway

Private APIs
Amazon API Gateway supports the private APIs, which are characterized by
the fact that they are accessible from within the VPC using an interface VPC
endpoint for the API Gateway execute-api component and is not exposed to
the Internet interface VPC endpoint, which is powered by PrivateLink, and
ensures that the traffic between VPC and the service (here API Gateway) is
limited within the Amazon network and never exposed to the Internet. A single
VPC endpoint could be used to access multiple private APIs.
The IAM resource policies play a vital role in granting access to the APIs from
the VPCs or VPC endpoints. The following is a sample policy that allows the
API execution from a particular VPC endpoint (VPCE) using the IAM policy
condition:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": "*",

"Action": "execute-api:Invoke",

"Resource": ["execute-api:/*"]

},

{

"Effect": "Deny",

"Principal": "*",

"Action": "execute-api:Invoke",

"Resource": ["execute-api:/*"],

"Condition" : {

"StringNotEquals": {

"aws:SourceVpce": "<vpce-id>"
}

}

}

]

}

The resource policies could be attached to the API using the following CLI
command:
$ aws apigateway create-rest-api \

--name "<api-name>" \

--policy "<jsonEscapedPolicyDocument>"

As a precautionary step, the endpoint policies could also be assigned to the
VPC endpoint to specify the access that is being granted.

AuthN/AuthZ with Amazon Cognito
Most web applications have some kind of an authentication (AuthN) and
authorization (AuthZ) scheme setup for its users. Authentication helps define
"who" can access the application by virtue of knowing a secret piece of
information (like a password or a token) or by virtue of possessing something
(physical or virtual) like Google Authenticator App or RSA token.
Authorization defines "which" resources can they access and "what" can they
do with such resources. Amazon Cognito can greatly help in setting up the
authentication, authorization, and user management needs of an application. It
has several features including customized authentication flow, anonymous
users, etc. However, we will briefly touch upon some of the basic features.
Covering all the features provided by Cognito is outside the scope of this book.
Cognito essentially has the following two primary components:

User pool: User pool acts as a user directory and provides a total sign-
up/sign-in solution for the mobile and web application users.
Identity pool: Identity pool helps the users to access the AWS resources
(like S3, DynamoDB, etc.) by obtaining the temporary AWS credentials.
Identity pools also support the anonymous or guest users.

Let's look at these components in detail.

User Pool
The Cognito user pool has several features. In addition to the basic sign-up and
sign-in services, the user pool also supports the federated sign-in with the
Facebook, Google, OIDC, and SAML identity providers. Support for user
directory and profile management and several security features like MFA,
phone/email verification, etc., are also present. We have already visited the
Cognito authorizers for API Gateway (refer to the Securing APIs / API
Authorization / Cognito Authorizer section), where we used an existing
Cognito user pool with some specific configurations and associated this pool to
a Cognito authorizer on API Gateway and used the authorizer to allow or deny
access to the API resources and methods. Users once authenticated by Cognito,
receives a set of tokens including an ID token (JWT), which is passed along
with an API request and used to secure and authorize an API access. Let's
briefly talk about the Cognito user pool-based authentication flow.

Authentication
Figure 5.29 shows a typical client-side authentication flow based on the
Cognito user pool, as follows:

Figure 5.29: Cognito user pool based client-side authentication flow

A user leverages the mobile or web application to authenticate and pass
the username and password. The application initiates the authentication
flow with Amazon Cognito using the API operation – InitiateAuth.
This operation returns the authentication parameters. Next, the app calls
RespondToAuthChallenge API operation and passes the user credentials.
Optionally, Cognito can post multiple challenges (like in case of Multi-
Factor Authentication or MFA) based on the user pool configuration.

If Amazon Cognito is able to authenticate the user successfully, it returns
the user's tokens (access token, id token, and refresh token) to the
application.
The application then uses the id token on the user's behalf to access the
AWS resources (like API Gateway, etc.), by passing the token in the
Authorization header.

This authentication flow applies not just for Amazon API Gateway. Basically,
Amazon Cognito leverages the RS256 algorithm and generates two pairs of
RSA keys for each user pool. The private key of each pair is used to sign the
respective id and access JWT tokens. The public keys are made available by
Cognito at a well-known JSON Web Key Sets or JWKS endpoint in the
following format:
https://cognito-idp.<region-code>.amazonaws.com/<user-pool-id>/.well-
known/jwks.json
If we have a custom web application that leverages the Cognito user pool for
authenticating its users, then once the id token is received, the application can
verify the token by using the kid (or public key identifier) present in the
header of the JWT token and look it up in the JWKS endpoint, and
subsequently, extract the corresponding public key (using popular libraries)
and verify the signature used to sign the token.
In case, the application wants to perform server-side authentication from a
backend application (like Node.js or Java), it needs to initiate the
authentication process using the AdminInitiateAuth API operation which
requires the AWS administrator credentials. Like InitiateAuth, this call
returns the authentication parameters. Once the application receives the
authentication parameters, it calls the AdminRespondToAuthChallenge API
operation. However, to use the server-side authentication flow, the user pool
should be configured accordingly. ADMIN_USER_PASSWORD_AUTH must be
enabled in auth flow configuration of the user pool. This was done in the
Cognito Authorizer section which helped us to sign-in an existing user by
leveraging the administrator-initiated authentication process.

Authorization
Fine grained authorization could be implemented with the Cognito user pool
by leveraging 'groups'. Groups in Cognito are associated with the IAM roles.
These roles, in turn, are associated with the policies that carry the necessary

permissions for accessing the AWS resources. The users can be added to one
or more groups. Once a user pool is created, the groups can be managed from
the General Settings | Users and groups option on the left navigation panel
of the Amazon Cognito Management console. Figure 5.30 shows the Create
group page. Note that each group can be assigned a Precedence value. If a
user is associated with multiple IAM roles by virtue of being part of multiple
groups, then the role pertaining to the group with the lowest Precedence value
is selected, and it becomes the preferred role. Refer to figure 5.30 as follows:

Figure 5.30: Creation of group in Cognito

Once the user is authenticated against the user pool, the id token generated by
Cognito will carry the group and role information. These, in turn, could be
used to provide the necessary authorization to the users. The following is an
example of a decoded id token issued by Cognito that carries the user, group,
and role information in the payload as claims:

{

"sub": "26787590-xxxx-xxxx-xxxx-xxxxxxxxxx",

"cognito:username": "user1",

"cognito:groups": [

"AppUser"

],

"cognito:roles": [

"arn:aws:iam::<account-id>:role/service-role/CustomRole"

],

"cognito:preferred_role":"arn:aws:iam::<account-

id>:role/service-role/CustomRole",

"email_verified": true,

"iss": "https://cognito-idp.ap-south-1.amazonaws.com/ap-south-

1_Zjus6dAmg",

"aud": "45f4d8tph14jlve5v5c1ttul3s",

"token_use": "id",

…

}

Identity Pool
An identity pool, as the name suggests, is a pool of unique identities with
assigned permissions. Identity pools can include the users in the Cognito user
pool, users who authenticate against the external identity providers (Google,
Facebook, Twitter, or SAML based), or the users authenticated by the custom
authentication process or unauthenticated users. Cognito issues unique
identifiers for each such user and acts as an OpenID token provider that is
trusted by Amazon Simple Token Service (STS) to access temporary, short-
lived AWS credentials. Let's visit the identity pool (federated identity)
authentication flow to understand this better.

Authentication
Essentially, with the identity pools, there are two associated authentication
flows – basic and enhanced. The enhanced flow is a simplified version, and
hence is used more often. Let's have a look at how the enhanced flow works
with an external identity provider. Refer to figure 5.31 as follows:

Figure 5.31: Cognito Identity Pool based enhanced authentication flow

The following are the steps:

The user authenticates with the external identity provider or IdP (like
Google, Facebook, etc.) via the application.
The IdP issues the authentication tokens for the user.
The application calls the GetID API operation to establish a new identity
in Amazon Cognito and passes the authentication token from the external
IdP.
Upon receiving the authentication token, Cognito validates this token
with the external IdP.
Once validated, Cognito issues its own tokens to the user.
Next, the application calls the GetCredentialsForIdentity API
operation and passes the Cognito tokens received in the previous step.
Amazon Cognito validates the token yet again with the external IdP.
Amazon Cognito internally negotiates with Amazon STS and receives
the AWS credentials. Note that, these steps involve assuming a role with
the web identity on behalf of the user, and therefore, the identity pool
must have appropriate IAM roles associated with it.
Amazon Cognito responds back to the application and passes the AWS
credentials.

With the AWS credentials, the application can now call the protected
AWS resources (like API Gateway, DynamoDB, etc.) based on the
permissions associated with the credentials.

The basic flow is slightly different from the enhanced flow, in that, the
application negotiates directly with Amazon STS to get the AWS credentials
via a AssumeRoleWithWebIdentity API call. In the enhanced flow, Amazon
Cognito does this automatically when the application calls the
GetCredentialsForIdentity API operation. In fact, this operation internally
does two things – retrieves the OpenID token (GetOpenIdToken), and then
assumes a role to fetch the AWS credentials from Amazon STS
(AssumeRoleWithWebIdentity).
In most scenarios, it is recommended to use the enhanced flow as it leads to
fewer network calls and the IAM role ARNs need not be embedded into the
application.
An important thing to note here is that, with the Cognito identity pool, it's
always a temporary AWS credential (AWS access key ID and secret access key
combination) that is used to access the protected resources. This means, if we
want to protect the APIs (published on Amazon API Gateway with an identity
pool), we will have to use an IAM authorizer (refer to the Securing APIs / API
Authorization / IAM Authorizer section).

Authorization
With an identity pool, the authorization is governed by the IAM roles defined
during the creation of the pool for the authenticated and unauthenticated users.
On the Create new identity pool page in the Amazon Cognito Management
console, we need to supply a unique pool name, decide whether the
unauthenticated users will be allowed to get authenticated against the identity
pool, select the basic authentication flow (if required), and select one or more
authentication providers (like Facebook, Google+, Twitter, etc.). On the next
page, the IAM roles need to be configured. These roles should, in general,
follow the principal of least privilege. Refer to figure 5.32 as follows:

Figure 5.32: IAM role configuration for authenticated and unauthenticated users in Cognito Identity
Pool

These roles and the associated permissions could define the authorization
scheme for the users authenticated against a third-party identity provider.

Granular authorization with user pool and identity
pool
We can leverage both the user pool and the identity pool to create a fine-
grained authorization scheme based on the user pool groups, where each group
is mapped with an IAM role. The following is how the solution would look, as
shown in figure 5.33:

Figure 5.33: Authorization with User Pool and Identity Pool

The following are the steps pertaining to the solution:

1. The Mobile or Web client authenticates the user against the Cognito user
pool. This pool is configured with the users assigned to the groups and
each group is associated with an IAM role.

2. The user pool responds with the Cognito tokens (id, access, and refresh
tokens). The "id" token carries the JWT claims pertaining to the groups
and IAM roles associated with the user.

3. The id token is passed to the Cognito identity pool and the preferred
IAM role is chosen from the JWT claims. The identity pool negotiates
with Amazon STS to generate the AWS scoped credentials with
permissions based on the chosen IAM role. The AWS credentials are sent
back to the client.

4. The client can use the AWS credentials to access the AWS resources
based on the privileges defined in the IAM role, based on which the
credentials were generated.

The important thing to note here is that the identity pool needs to inspect the
JWT claims and decipher the IAM role to be used to generate the AWS
credentials which will be returned to the client. The identity pool needs to be

configured to perform this action. Here's how the identity pool needs to be
configured.
Firstly, the Authentication provider for the identity pool needs to be the
Cognito user pool identified by the pool ID and the application client ID
during the creation of the identity pool. Refer to figure 5.34 as follows:

Figure 5.34: Configuration of Cognito User Pool as authentication provider in Identity Pool

Secondly, the identity pool needs to be edited, and under the "Authentication
providers" section, in the "Cognito" tab, where the user pool has been selected,
we need to select the Authentication role as "Choose role from token", and if
no roles are specified in the token, then the request needs to be denied. This
role setting will essentially override the default IAM role for the authenticated
users. Refer to figure 5.35 as follows:

Figure 5.35: Configuring Cognito Identity Pool to retrieve role from authentication token

A quick introduction to AWS Amplify

AWS Amplify is a framework that comprises of a set of tools and services
which can help the mobile and front-end web developers to build scalable
applications powered by AWS quickly. Amplify supports JavaScript, React,
Angular, Vue, Next.js, Android, iOS, React Native, Flutter, and other popular
web and mobile frameworks. Amplify includes an array of services, which
includes Authentication, DataStore, PubSub, Storage, Push Notification, and
others.

The following link provides details on how to install Amplify CLI which
is used to add services to the application and deploy them:
https://docs.amplify.aws/cli/start/install

Amazon Cognito is used as the primary authentication provider by the AWS
Amplify framework and AWS recommends using Amplify to integrate the
mobile and front-end web applications with Cognito. Essentially, Amplify
makes it easy to integrate with Cognito. Once the authentication service has
been added to the project and deployed using Amplify CLI, a configuration file
named aws-exports.js gets created in the source (src) folder with the
Cognito resource information (like region code, identity pool ID, user pool ID,
etc.). The application can now start to use Amplify by loading this
configuration file in the app's entry point (say index.js), as follows:

import Amplify from 'aws-amplify';

import awsconfig from './aws-exports';

Amplify.configure(awsconfig)

Subsequently, we may choose either to use the pre-built Amplify UI
components or call the authentication APIs manually to enable the sign-
up/sing-in and sign-out flows.
The following is a sample JavaScript code that shows the functions for sign-
up, sign-in, and sign-out. The code attempts to introduce how the AWS
Amplify authentication APIs could be easily used with the front-end
applications. Note that, this is not a full-fledged application. Refer to the
following code:

// SignUp, SignIn and SignOut utility functions

import {Auth} from 'aws-amplify';

async function userSignUp(username, password, email) {
try {

https://docs.amplify.aws/cli/start/install

const {user} = await Auth.signUp({username, password,
attributes: {email}});

console.log("User details: ", user);

}

catch (err) {

console.log('Unable to sign-up user:', err);

}

}

async function userSignIn(username, password) {
try {

const user = await Auth.signIn(username, password);
console.log("User signed in successfully: ", user);

}

catch (err) {

console.log('Unable to sign-in user', err);

}

}

async function userSignOut() {
try {

await Auth.signOut();
}

catch (err) {

console.log('Unable to sign-out user: ', err);

}

}

The process of integrating Amplify with the front-end web application is
explained in the following link: https://docs.amplify.aws/lib/auth/getting-
started/q/platform/js

Securing web applications hosted on Amazon S3
and CloudFront
Amazon S3 and Amazon CloudFront could be used together to host the
secured web applications. Amazon S3 supports the hosting of static web
applications in the form of static websites. A static website is characterized by
static contents in the individual web pages along with the client-side scripts.
We can also deploy a highly scalable and maintainable single page

https://docs.amplify.aws/lib/auth/getting-started/q/platform/js

application (SPA) that is characterized by the client-side rendering and can
dynamically fetch the data from the back ends (like Node.js, Java, .Net, etc.),
using a combination of Amazon S3 and Amazon CloudFront (Content
Distribution Network (CDN)). This combination of services can help deploy
a web application with the required level of protection from common attacks
and vulnerabilities.
Using AWS CLI to create/manage the CloudFront distributions is relatively
more challenging when compared with working via the AWS Management
console. Hence, we will use the AWS Management console specifically for the
CloudFront related activities in this section. For any other operations, we will
use AWS CLI and assume that the associated credentials have permissions of
an Administrator (AdministratorAccess IAM policy).

Securing S3 access with Origin Access Identity
Let's assume we want to create a web application and host the static contents
(HTML pages, CSS files, JavaScript files, and other static files) in Amazon S3.
Moreover, we assume that the custom domain name for our website is
app.example.com and that we own the example.com domain and it has been
configured in Amazon Route 53. Finally, using HTTPS, we can securely verify
the identity of the website and encrypt the HTTP traffic between the client
browser and the website. For this, we assume that we already have an Amazon
Certificate Manager (ACM) certificate with the domain name
app.example.com or a wildcard certificate *.example.com in the North
Virginia (us-east-1) region. The region selection is important since
CloudFront can work with the certificates in the us-east-1 region only.
At this point, we can start by simply creating a bucket with a same name as the
custom domain name and put all the relevant files in it (along with the
directory structure), using the following AWS CLI commands:

$ aws s3api create-bucket --bucket app.example.com \
--region ap-south-1 --acl public-read \

--create-bucket-configuration LocationConstraint=ap-south-1

$ aws s3 cp . s3://app.example.com/ --recursive \
--acl public-read --region ap-south-1

Now, we can create a CloudFront web distribution from the AWS management
console with the following configurations under Origin Settings:

Origin Domain Name: We can select the S3 bucket just created.
The domain name of the bucket will have the following form:
app.example.com.s3.amazonaws.com.
Restrict Bucket Access: Select Yes.
This setting will ensure that only CloudFront Origin Access Identity
(OAI) will be able to access the S3 bucket.
Origin Access Identity: Select Create a New Identity.
With this setting, CloudFront will create an identity which will have the
permission to access the S3 bucket. The public contents in S3 will thus be
accessible only through the CloudFront distribution, which will utilize
the Amazon S3 REST endpoints to access S3 contents.
Grant Read Permissions on Bucket: Select Yes, Update Bucket
Policy.
This setting will automatically create a bucket policy and associate it
with the S3 bucket. The policy will define OAI as the Principal. The
following is a sample bucket policy:

{

"Version": "2008-10-17",

"Id": "PolicyForCloudFrontPrivateContent",

"Statement": [

{

"Sid": "1",

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin

Access Identity E1PLG6IRNVYY7R"

},

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::app.example.com/*"

}

]

}

Refer to figure 5.36 which shows these configurations in AWS
Management console, as follows:

Figure 5.36: Configuration of "Origin Settings" in CloudFront Web distribution

Under Default Cache Behaviour Settings of the Create Distribution
page, we can make the following changes:

Viewer Protocol Policy: Select Redirect HTTP to HTTPS.
Allowed HTTP Methods: Select GET, HEAD

It is recommended to use HTTPS for the websites. Under Distribution
Settings of the Create Distribution page, we can make the following
configuration:

Alternate Domain Names (CNAMEs): app.example.com
SSL Certificate: Select Custom SSL Certificate and select the ACM
certificate from the us-east-1 region. The default *.cloudfront.net
certificate could also be used. However, we will stick with the custom
certificate.

Refer to figure 5.37 which shows these configurations in the AWS
Management console, as follows:

Figure 5.37: Configuring the web distribution to use HTTPS

At this point, we can create the distribution.
Finally, with the web distribution created, we can create an alias record in
Route 53 with the alias target as the CloudFront domain name which appears
as Domain Name under the General tab of Distribution Settings of the web
distribution, and it looks like d2l3h8n9k35vft.cloudfront.net. We can create
this record with the AWS CLI commands.
First, we have to create a JSON file with Route53 record set contents
(filename: cloudfront-alias-record.json) as follows:

{

"Comment": "CREATE/DELETE/UPSERT a record ",

"Changes": [{

"Action": "UPSERT",

"ResourceRecordSet": {

"Name": "app.example.com",
"Type": "A",

"AliasTarget": {

"HostedZoneId": "Z2FDTNDATAQYW2",
"DNSName": "d2l3h8n9k35vft.cloudfront.net",
"EvaluateTargetHealth": false

}

}

}]

}

In the preceding file, we are simply attempting to “upsert” a Route53 record
with name “app.example.com” and change it’s target to the alias of the
CloudFront domain name.
We must note that the hosted zone ID for CloudFront distribution has been
specified as Z2FDTNDATAQYW2. This is always the hosted zone ID when we
create an alias record that routes the traffic to a CloudFront distribution.
Subsequently, we will have to apply the change to our own Route 53 hosted
zone, with the following CLI command:

$ aws route53 change-resource-record-sets \
--hosted-zone-id <R53-hosted-zone-id> \

--change-batch file://cloudfront-alias-record.json

At this point, we can easily test that the web application is accessible via the
following URL: https://app.example.com/index.html

Securing S3 Website access with Referrer Header
In the previous section, we saw how to secure a website by restricting access to
the S3 REST endpoint using OAI. Another way is to first create an S3 based
website (enable static website hosting) on the bucket and put the contents in it.
Then, use the S3 website endpoint (app.example.com.s3-website-
region.amazonaws.com) as the Origin Domain Name while creating a
CloudFront web distribution. In this case, we will not get the option of
restricting the bucket access with OAI. Instead, we can supply a header under
Origin Custom Headers with the header name as Referrer and a secret string
as the header value. This custom header is forwarded to the origin (S3 bucket).
This secret string is only shared and known by the web distribution and the S3
bucket, thereby restricting access. It is also recommended to rotate this secret
periodically.

Configure additional Security Headers
We can add the security headers to each response served by Amazon
CloudFront. For this purpose, we can leverage Lambda@Edge. Essentially, a

https://app.example.com/index.html

Lambda function could be configured with the CloudFront Origin Response
trigger (after CloudFront receives the response from the origin) to add the
security headers to the response. The most common security headers are the
following – HTTP Strict Transport Security (HSTS), Content-Security-Policy,
X-Content-Type-Options, X-Frame-Options, X-XSS-Protection, Referrer-
Policy, etc. These security headers actually tell the browser how to behave
when handling the site's content.

For more information on individual security headers, refer to the
following link: https://owasp.org/www-project-secure-headers/

Let's consider the example of the HSTS policy. Communication over plain
HTTP connection is not secure since the traffic is not encrypted and could be
subject to network level eavesdropping. The Strict-Transport-Security
response header informs the browser to always use HTTPS to load the site (for
a specified duration), shown as follows.

Strict-Transport-Security: max-age=31536000

The value passed as max-age is basically the number of seconds for which the
browser will access the domain via HTTPS without any redirects. A sample
Lambda function (in Node.js) that sets the HSTS security header is shown as
follows:

exports.handler = (event, context, callback)=>{

const response = event.Records[0].cf.response;

const headers = response.headers;

// Add security headers

headers["strict-transport-policy"] =

[

{

key: "Strict-Transport-Security",

value: "max-age=63072000" // Duration= 1 year}

];

// Add more headers here

callback(null, response);

}

This Lambda function will have to be deployed in the us-east-1 region, in
order to configure CloudFront as the trigger and deploy it as Lambda@Edge. We

https://owasp.org/www-project-secure-headers/

will use the AWS Lambda Management console for this purpose. The
following are the steps:

1. Deploy the Lambda function in us-east-1 (using Management console or
AWS CLI or any other preferred means).

2. Select the deployed function from the AWS Lambda Management
console.

3. From the Function Overview section, we will select the Add trigger"
button, which will open up the Add trigger page.

4. Next, from the Trigger Configuration drop-down, we will select
CloudFront, which will provide us with an option to deploy this function
as Lambda@Edge. Refer to figure 5.38 as follows:

Figure 5.38: Configuring Amazon CloudFront as a trigger for Lambda@Edge deployment

Next, we will click on the Deploy to Lambda@Edge button which opens
another page where we will select the CloudFront distribution and CloudFront
event (Origin Response), and finally, check on Confirm deploy to
Lambda@Edge. Refer to figure 5.39 as follows:

Figure 5.39: Deploying a Lambda function to Lambda@Edge

One can easily test if this Lambda works as expected by checking the response
headers of a request placed to the CloudFront distribution.

Configure Geo Restrictions
We can leverage the Amazon CloudFront distribution features, if the web
application needs to be geo restricted. This means, the web traffic will be
served by the distribution only if they are triggered from the whitelisted
countries, otherwise, any web traffic arising from any of the blacklisted
countries will be dropped by the distribution.
To enforce the geo-restriction rules, we need to select the web distribution
from the CloudFront console, go to the Restrictions tab, and edit the Geo
Restriction rule. Refer to figure 5.40 as follows:

Figure 5.40: Configuring Geo Restriction for CloudFront distribution

On the Edit Geo-Restrictions page, we can Enable Geo-Restriction,
select the restriction type to be either Whitelist or Blacklist, select the
countries accordingly, and save the changes. Refer to figure 5.41 as follows:

Figure 5.41: Specifying the countries to be whitelisted or blacklisted for "Geo Restriction"

Externalizing the secrets and configuration
parameters
Applications use secrets like database passwords, API keys, and other tokens
to integrate with the various components and systems to function properly.
However, it's considered an antipattern and a major security risk to hardcode
sensitive information, either in the application configuration files or embed
them in the application code. These practices might lead to a security incident.
In fact, modern applications externalize these sensitive configuration
parameters to some secure secret storage service, and subsequently, either look
them up at runtime programmatically for use or inject them as environment
variables during deployment time.

AWS provides us the choice of using two services for this purpose – AWS
Secrets Manager and AWS Systems Manager Parameter Store. In this section,
we will first take a quick look at these services and then compare them to
understand when to use them.

AWS Secrets Manager
AWS Secrets Manager is a regional, managed service that helps protect the
secrets and centrally manage the lifecycle of these secrets, including their
rotation. The service has built-in integrations with some of the widely used
database services in the AWS ecosystem, like Amazon RDS, Amazon
DynamoDB, and Amazon Redshift. AWS Secrets Manager leverages IAM to
control the access to the secrets. The secrets are protected both at rest and in
motion. In fact, every secret is associated with an AWS Key Management
Service (KMS) key (either AWS managed or Customer Master Key), and this
key is used to encrypt the secret at rest. HTTPS is used for securing the secrets
in motion.

Anatomy of a Secret
A secret essentially comprises of an encrypted secret text (like credentials,
connection details, etc.) and some metadata elements that describes the secret
and tells the Secrets Manager how to handle it. Figure 5.42 shows the logical
structure of a secret in Secrets Manager, as follows:

Figure 5.42: Logical structure of a secret in SecretsManager

The structure comprises of metadata and a set of versions, which are described
as follows:

Metadata: Metadata carries the basic details of a secret like its Amazon
Resource Name (ARN), name, description, KMS key identifier,
frequency of rotation along with Lambda function details, and tags
(essentially custom key-value pairs used for logical grouping, cost
allocation, etc.).
Version: It is possible for a single secret to have multiple versions. This
is specifically true for secrets that are rotated. Each version holds a
version identifier, an encrypted secret value, and one or more staging
labels used to identify the stage of the secret rotation cycle.

Creation and Retrieval of Secrets
Creation of a secret in Amazon Secrets Manager is straightforward, if we use
AWS Management Console. The wizard supports multiple types of secrets
based on built-in integrations with database services. It also supports custom
secrets. Figure 5.43 shows the partial first screen of the Store a new secret
wizard with all the types of secrets that can be created, as follows:

Figure 5.43: Creation of a new secret in SecretsManager from AWS Management Console

After specifying the username and password, we need to select the AWS KMS
key which will be used to encrypt the secret at rest, followed by the selection

of the database in case of RDS, Redshift, DynamoDB, or any other database.
In the subsequent pages, we will specify the name, description, tags (optional),
and any resource-based policy (optional) for the secret. On the Configure
rotation page, we can enable automatic rotation and select the interval and
Lambda function that will be used to rotate the secret. Finally, on the Review
page, we can review the configuration that we specified and then store the
secret in Secrets Manager.
Let us now get into the details of how to create and retrieve the secrets with the
help of AWS CLI v2. At this point, we will assume that AWS CLI is already
installed and configured in the host from which the CLI will be invoked. The
permissions required are secretsmanager:CreateSecret and
secretsmanager:GetSecretValue and these permissions are granted for the
profile user named secuser.
The following command will create a secret (named bpb479-secret) in AWS
Secrets Manager. Note that the command uses the --secret-string option,
which means that the secret text is a string (and not binary). Moreover, the --
secret-string option can take a secret value directly as a string or we can
refer to a file. AWS recommends using secrets in the JSON format. However,
we can also place a text directly as a secret value. If Customer Master Key
(CMK) is not explicitly specified, the default AWS managed CMK is used to
encrypt this secret. Refer to the following command:

$ aws secretsmanager create-secret --name bpb479-secret \
--description "a sample secret" \

--secret-string file://secret.json --profile secuser

The preceding command creates a version of a secret and returns a response
similar to the following:

{

"ARN": "arn:aws:secretsmanager:ap-south-1:<account-

id>:secret:bpb479-secret-WadAS7",

"Name": "bpb479-secret",

"VersionId": "c60629bb-934a-480d-846a-4c028a94ee6d"

}

It is a good practice to encode the secret value with Base64 and then place the
secret in Secrets Manager. While retrieving the value, we will need to decode
it.

Secrets could also be created using a custom defined AWS KMS CMK, which
is used to encrypt the value of the secret. The key is identified by the CMK
ARN, key ID, or key alias. The option used for this purpose along with the
create-secret command is --kms-key-id. The required permissions for this
operation to be successful are kms:GenerateDataKey and kms:Decrypt.
The retrieval of the secret from Secrets Manager is straightforward. We can use
the following command:

$ aws secretsmanager get-secret-value --secret-id bpb479-secret \
--profile secuser

The output of the command is a JSON that looks somewhat like the following:

{

"ARN": "arn:aws:secretsmanager:ap-south-1:<account-

id>:secret:bpb479-secret-WAdAS7",

"Name": "bpb479-secret",

"VersionId": "c60629bb-934a-480d-846a-4c028a94ee6d",

"SecretString": "{\n \"username\": \"guest\"\n \"password\":

\"P@$$w0rd\"\n}\n",

"VersionStages": [

"AWSCURRENT"

],

"CreatedDate": "2021-05-30T00:06:20.870000+05:30"

}

To directly fetch the secret value, we will use the --query option and fetch the
output as text using the --output option. This time, we will get the secret
value as response in text shown as follows:

$ aws secretsmanager get-secret-value --secret-id bpb479-secret \
--query 'SecretString' --output text --profile secuser

The creation and retrieval of the binary secrets are very similar to what we
have seen so far. However, note that the binary secrets cannot be created from
AWS Management Console. In this case, we will need to use the --secret-
binary option. The following are the corresponding CLI commands to create a
binary secret and fetch the value:

$ aws secretsmanager create-secret --name "bpb479-binary-secret"
\

--description "Private key file" --secret-binary
fileb://./private.key \

--profile secuser

A binary secret is automatically Base64 encoded while being stored in Secrets
Manager, and thus needs to be decoded in the retrieval cycle, as follows:

$ aws secretsmanager get-secret-value \
--secret-id "bpb479-binary-secret" \

--query "SecretBinary" --output text \
--profile secuser | base64 --decode

In the previous command, we have used the base64 Linux utility to decode the
secret. The get-secret-value command supports the use of the options --
version-id and --version-stage, to further identify the secret. In fact,
version-id is the unique version identifier and version-stage refers to the
staging label attached to the version. If these options are not used, then the
command returns the value of the current version, identified by the
AWSCURRENT staging label. Yet another valid staging label is AWSPREVIOUS. We
will learn more about these labels under Rotation of Secrets.
Now, let's use AWS SDK (for JavaScript) to fetch a secret from Secrets
Manager. Most often, applications will fetch secrets at runtime and the
following example will help to understand how it is done. The example shows
a simple function that accepts a secret identifier and attempts to fetch the secret
value (string) from Secrets Manager using AWS SDK. The function can be
called from the code to fetch the value of the supplied secret. Note that, this
code will work only if it has the required permission of
secretsmanager:GetSecretValue, through the IAM role or AWS credentials.
Moreover, AWS Secrets Manager is a regional service, which means, we need
to specify the region code before calling the service. Refer to the following
code:

/* Fetch a secret from AWS Secrets Manager using AWS SDK */

const AWS = require('aws-sdk');

const REGION_CODE = process.env.REGION_CODE || "ap-south-1";

async function fetchSecret(secretId){

const SECRET_STRING = "SecretString";

if(!secretId || secretId.trim() == ""){

throw Error("Invalid secret");

}

try{

AWS.config.update({region: REGION_CODE});

let request = new AWS.SecretsManager()

.getSecretValue({SecretId: secretId});

let secretValue=null;

await request.promise()

.then(function(data){

if(SECRET_STRING in data){

secretValue = data.SecretString;

console.log("Secret value = ", secretValue);

}

else{

console.error("Expecting secret string..not found");

throw Error("Invalid secret");

}

})

.catch(function(err){

throw err;

});

return secretValue;

}

catch(err){

console.error("Error > ", err);

throw Error("Unable to fetch secret from SecretsManager");

}

}

To invoke this function, we can use the following construct (or any other
function calling construct):

(async()=>{

let secret = await fetchSecret("bpb479-secret");

console.log("Secret = ", secret);

})();

Rotation of Secrets

AWS Secrets Manager can automatically rotate the secrets. In fact, this is the
driving factor for selecting Secrets Manager under scenarios where automated
secret rotation is required. Secrets Manager natively supports the secret
rotation for databases like Amazon RDS, Amazon Redshift cluster, and
Amazon DynamoDB. Essentially, Secrets Manager leverages pre-defined
Lambda functions for each database for facilitating the rotation. Secrets
Manager can also rotate secrets pertaining to the other databases (which are not
natively supported), and the other types of secrets. We are required to
customize the Lambda function to implement specific details of rotating a
secret.
There are four distinct steps that need to be implemented in the Lambda
function for rotating a secret. The Lambda function is then invoked with a
JSON event that has the following structure for each of the steps:

{

"Step" : "createSecret OR setSecret OR testSecret OR
finishSecret",

"SecretId" : "<ID or ARN of the secret to rotate>",

"ClientRequestToken" : "<UUID for idempotency>"

}

The steps involved and sent as "request.type" along with the JSON event, to
trigger the Lambda function are described as follows:

1. CreateSecret: In this step, the Lambda function generates a new version
of the secret. This can be as simple as generating a new API key or
password or some arbitrarily complex set of steps. This new version is
assigned the staging label AWSPENDING, which marks it as in-process
version of the secret. Applications still access the version labeled as
AWSCURRENT.

2. SetSecret: In this step, the rotation function retrieves the version of the
secret marked as AWSPENDING and then invokes the database or identity
service to change or create the password or key. The Lambda function
would thus require permissions to perform this task. Applications are still
associated with the AWSCURRENT version of the secret.

3. TestSecret: This step enables the Lambda function to verify the
AWSPENDING version of the secret by using it to access the protected
resource in the same way that the application would. Even in this step,
the applications are still using the AWSCURRENT version.

4. FinishSecret: In this step, the Lambda function performs any leftover
resource specific activities on the AWSPENDING version of the secret.
Subsequently, as the final step, the AWSCURRENT label is associated with
the new version of the secret. The old version is labeled as AWSPREVIOUS
and used (if required) for recovery as the last known good version of the
secret. At this point, the applications could start to use the new version of
the secret as the AWSCURRENT version.

The implementation of the Lambda function for rotating a secret is outside the
scope of this book. However, AWS has a set of pre-defined Lambda functions
for the natively supported databases which can be studied as the starting point
to create a custom Lambda for a specific secret type and identity service.
Moreover, AWS provides several templates that can be used to create a custom
Lambda rotation function.

The latest rotation templates are available at the following link:
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_
available-rotation-templates.html

Access Control for Secrets
The IAM policies represent the fundamental building blocks for providing
access to the secrets that reside in AWS Secrets Manager. Secrets Manager
supports two types of policies – identity based and resource based. The
identity-based policies are attached directly to identities like IAM user, group,
or role, and the resource-based policies are attached to the secrets. The
resource-based policies are particularly helpful when allowing access to the
secrets from the other AWS accounts.
Let's consider an example of the identity-based policy. When this policy is
associated to an identity, like the IAM user, the user becomes the principal
implicitly. The user will be allowed to call the GetSecretValue operation on
any secret in a defined AWS account in the ap-south-1 region which has a
name starting with bpb479-secret. In addition, this secret should also have a
resource tag named env with the value dev, associated with it. The following is
how the policy will look like:

{

"Version": "2012-10-17",

"Statement": [

{

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-rotation-templates.html

"Sid": "BPB479",

"Effect": "Allow",

"Action": "secretsmanager:GetSecretValue",
"Resource": "arn:aws:secretsmanager:ap-south-1:<account-

id>:secret:bpb479-secret*",

"Condition": {

"StringEqualsIgnoreCase": {

"secretsmanager:ResourceTag/env": "dev"
}

}

}

]

}

Now, let's consider an example of the resource-based policy. In a resource-
based policy, we will have to explicitly define the principal. The secret to
which this policy is attached implicitly becomes the resource. Each secret can
have one resource-based policy attached to it and can be used for the cross-
account access of the secrets. In the following example, we are simply
allowing another account to invoke the GetSecretValue operation on the
secret with ARN arn:aws:secretsmanager:ap-south-1:<account-
id>:secret:bpb479-secret-WAdAS7 and a condition that the staging label
associated with the request will have to be AWSCURRENT; this means, only the
requests for accessing the current version of the secret are allowed:

{

"Version" : "2012-10-17",

"Statement" : [

{

"Effect": "Allow",

"Principal": {"AWS": "arn:aws:iam::<another-acct-id>:root"},
"Action": "secretsmanager:GetSecretValue",

"Resource": "arn:aws:secretsmanager:ap-south-1:<account-
id>:secret:bpb479-secret-WAdAS7",

"Condition": {

"ForAnyValue:StringEquals": {

"secretsmanager:VersionStage" : "AWSCURRENT"

}

}

}

]

}

Once the resource-based policy is defined, we can use the AWS CLI command
to apply this policy to a secret. At this point, we assume that we have placed
the preceding policy content in a file named resource-policy.json. The
following CLI command will associate the resource-based policy to the secret
named bpb479-secret:

$ aws secretsmanager put-resource-policy --secret-id bpb479-
secret \

--resource-policy file://resource_policy.json

AWS Systems Manager Parameter Store
AWS SSM Parameter Store is a capability of the AWS Systems Manager
service that provides secure and hierarchical storage for secrets and other
configuration data. The service enables strict separation of configuration from
the code, which is in line with the Twelve Factor App methodology and
improves the security posture. The configuration data could be pushed into
SSM Parameter Store, thereby ensuring that the same could be
changed/updated very easily across deployments without making any changes
to the code. The configuration data could be injected as environment variables
for the code to use.
The parameters stored in SSM Parameter Store could be classified as either
standard or advanced. This classification takes place during the creation of the
parameter. Subsequently, a standard parameter could be changed to advanced
parameter but not the other way round, due to the risk of data loss. This is so
because, an advanced parameter supports a value of size 8KB, whereas a
standard parameter supports 4KB value size. While the standard parameters do
not incur any additional costs, additional charges do apply to the advanced
parameters. Additionally, the number of standard parameters supported per
AWS account per AWS region is 10000, whereas the limit is 100000 for the
advanced parameters.

Creation and retrieval of parameters
SSM Parameter Store supports three types of parameters – String,
StringList (comma separated list of values), and SecureString (encrypted

parameter value). We will delve into the nitty-gritty of how to create each type
of parameter and then learn how to retrieve the parameter value and other
details.
We will use the AWS CLI v2 commands to create and retrieve the parameters.
At this point, we assume that the required permissions have been given to the
user param_user and the user's programmatic credentials have been configured
in AWS CLI and associated with a new profile named param_user.
The following is the CLI command to create a parameter named
/dev/app1/integration/requestTimeout in SSM Parameter Store of type
String (specified with the option type). Also, by default, the Standard tier is
assumed. If required, the tier could be changed using the tier option that can
have three possible values – Standard, Advanced, and Intelligent-Tiering.
Refer to the following command:

$ aws ssm put-parameter --name
/dev/app1/integration/requestTimeout \

--value "20" --type String --tier Standard

The command, if successful, returns the version number and tier of the new
parameter. Also notice that we have used a hierarchical name. This parameter
naming convention can help to fetch multiple parameters nested in a common
directory structure with a single retrieval command, as follows:

{

"Version": 1,

"Tier": "Standard"

}

In case we want to change the value of an existing parameter, we can still use
the put-parameter operation along with the overwrite flag, as shown in the
following command. Note that, this following command will create a new
version of the existing parameter:

$ aws ssm put-parameter --name
/dev/app1/integration/requestTimeout \

--value "30" --type String --overwrite

The command returns the new version number (version 2) in the following
response format:

{

"Version": 2,

"Tier": "Standard"

}

The other types of parameters (StringList and SecureString) could also be
created as follows:

$ aws ssm put-parameter --name /dev/app1/supportedCountries \
--value "IN,US,GB,ES,FR,JP" --type StringList

$ aws ssm put-parameter --name /dev/app1/apiKey \
--value file://apikey.txt --type SecureString

For creating a parameter of type SecureString, it's best practice to use a file
(apikey.txt in the preceding example) and delete the file, once done. We must
note here that SecureString can be encrypted with a KMS CMK, and for that
purpose, we can use the kms-id option along with the put-parameter option
and pass the CMK identifier. If kms-id is not specified, the default KMS key is
assumed.
Now, to retrieve the parameters created, we can use three commands – get-
parameter, get-parameters, and get-parameters-by-path. Let's go through
each one of them. The following command(s) could be used to retrieve the
details of a single parameter by its name:

$ aws ssm get-parameter --name
/dev/app1/integration/requestTimeout

The output of the preceding command is as follows:

{

"Parameter": {

"Name": "/dev/app1/integration/requestTimeout",

"Type": "String",

"Value": "30",

"Version": 2,

"LastModifiedDate": "2021-05-31T19:15:47.594000+05:30",

"ARN": "arn:aws:ssm:ap-south-1:<account-

id>:parameter/dev/app1/integration/requestTimeout",

"DataType": "text"

}

}

In case the parameter is of type Secure String the value is returned in the
encrypted format. However, if we want to view the decrypted value, we should
use the following with-decryption option:

$ aws ssm get-parameter --name /dev/app1/apiKey --with-decryption

The following is the output of the command (note that, the "Value" field
contains a decrypted value):

{

"Parameter": {

"Name": "/dev/app1/apiKey",

"Type": "SecureString",

"Value": "Hdfs6878gshTy_tt567",
"Version": 1,

"LastModifiedDate": "2021-05-31T23:53:10.213000+05:30",

"ARN": "arn:aws:ssm:ap-south-1:<account-

id>:parameter/dev/app1/apiKey",

"DataType": "text"

}

}

To retrieve the details of more than one parameter by their respective names,
we could use the following command:

$ aws ssm get-parameters --names \
"/dev/app1/integration/requestTimeout"
"/dev/app1/supportedCountries"

Finally, if we want to retrieve the parameter details based on a specific
hierarchy, then the following command can do just that for us:

$ aws ssm get-parameters-by-path --path /dev/app1

Note that, the path option in the preceding command doesn't specify any
particular parameter name, rather it specifies a hierarchical path. In case, we
want to recursively view all the parameters in the hierarchy, we can use the
recursive flag along with the get-parameters-by-path operation, as
follows:

$ aws ssm get-parameters-by-path --path /dev/app1 --recursive

The get-parameters-by-path is a powerful command, since it can be used to
fetch all the parameter details in a single call, say for a particular application
(here app1).

Comparison: AWS Secrets Manager v/s AWS SSM
Parameter Store
Now that we know about the relevant features from both AWS Secrets
Manager and AWS SSM Parameter Store services, it's time to understand when
to leverage them. Both have similar features, and a comparison is summarized
in Table 5.1, as follows:

Dimensions Aws Ssm Parameter Store Aws Secrets Manager

Support for KMS based
encryption

Yes Yes

Support for 4KB values Yes Yes

Built-in password generator No Yes

Automated secret rotation No Yes

Costs No additional charges for
standard tier

$0.40 per secret per month
$0.05 per 10000 API calls

Table 5.1: Comparison between AWS SecretsManager and AWS SSM Parameter Store

In short, both SSM Parameter Store and Secrets Manager supports KMS based
encryption of the secrets/parameters, and as such, they could be used to store
the secrets securely. However, SSM Parameter Store is a less costly option as
compared to Secrets Manager. But if we are looking for complex scenarios like
rotation of secrets, automated secret generation, etc., then Secrets Manager is a
better choice.

Web Application Firewall
A Web Application Firewall (WAF) is an application layer (layer-7) firewall
that is used to protect the web applications against threats and vulnerabilities
like SQL injection (SQLi), cross site scripting (XSS), malware infections,
impersonation, DDoS, and other zero-day exploits. A typical WAF analyzes
the HTTP requests and applies a set of rules to find if the request has any
malicious content.

AWS WAF is a managed Web Application Firewall service that could be used
to monitor the HTTP/S based application traffic from Amazon CloudFront,
Amazon API Gateway, Application Load Balancer, or AWS AppSync
GraphQL API. Any traffic that is found to be malicious based on the
configured WAF rules, is blocked with a HTTP 403 (Forbidden) response.
Typically, we can create web ACLs (Access Control List) to protect the AWS
resources. A web ACL is associated with a set of rules, which define the
protection strategy or inspection criteria along with an action (allow or deny).
If a web request meets the criteria, it can be allowed or blocked based on the
corresponding defined action. The rules could be logically grouped into
reusable rule groups. We could use both managed rule groups (by AWS or
AWS marketplace vendors) or create our own rules and rule groups. Once a
web ACL is defined, it is associated with one or more supported AWS
resources.
Web ACL Capacity Unit (WCU) is used to calculate and control the
resources that are required to run the rules, rules groups, and web ACLs.
WCUs are enforced on the rule groups and web ACLs. The costs pertaining to
each rule is directly linked with WCU. Simple rules use fewer WCUs and are
less costly compared to the complex rules which consume more WCUs and are
expensive.
To start creating a web ACL, we will visit the WAF and Shield Console and
click on the Web ACLs option from the left navigation panel. On the create web
ACL page, we will select the appropriate region and click on the Create web
ACL button to open a wizard. As the first step, we will specify the name,
description, and the resource type (CloudFront distributions or regional
resources) to which this web ACL will be associated. Refer to figure 5.44 as
follows:

Figure 5.44: Creation of a Web ACL from AWS Management Console

On the same page, under the Associate AWS resources section, we could
optionally add the AWS resources by clicking on the Add AWS resources
button which opens a popup where the resources could be selected and added
to the web ACL. Figure 5.45 shows the AWS resource options available for
the regional resource type selection. Once the resources are selected, clicking
on the Next button takes us back to the original wizard page. Refer to figure
5.45 as follows:

Figure 5.45: Associating supported AWS resources with a Web ACL

In the next step, we will add the rules and rule groups to the web ACL. We
could choose to add the managed rule groups or the custom rules/rule groups
(figure 5.46). There are quite a few options for the managed rule groups from
AWS and from the other marketplace vendors like Fortinet, GeoGuard,
Imperva, ThreatSTOP, etc. Refer to figure 5.46 as follows:

Figure 5.46: Adding rules to a Web ACL from AWS Management Console

On the Add managed rule groups page, we can select one or more rule
groups. There is a selection of both paid and free rule groups. Figure 5.47
shows how a free rule group named Core rule set which includes general
rules to protect the web applications including the OWASP vulnerabilities, is
added to the web ACL by selecting Add to web ACL under the Action column,
as follows:

Figure 5.47: Selection of a managed rule group to associate with Web ACL

Once the selection is done, we must click on the Add rules button at the
bottom of the page. At this point, we need to keep a watch on the WCU
consumed due to the addition of the rule set and select the Default web ACL
action for requests that don't match any rules (by default, it's Allow)
and then click on the Next button.
On the next page, if multiple rule groups are selected, we could set the Rule
priority and click on Next. We could also configure the Amazon CloudWatch
metrics and Request sampling options on the next page, and then finally,
review the configurations made to the web ACL before clicking on the Create
web ACL button.

When using the WAF appliances (like Barracuda, etc.), there are several clouds
native WAF patterns that are used by the organizations on the AWS cloud; a
couple of interesting ones are as follows:

WAF sandwich: In a WAF sandwich pattern, the WAF layer is
sandwiched between two ELBs. Essentially, the incoming traffic is
converged into the WAF layer which must be scalable and then the traffic
is directed to the backend application layer.
WAF based VPC: WAF based VPC directs the incoming traffic through
an ELB into the WAF layer which is placed in a separate VPC. This WAF
VPC has a VPC peering with the application VPC.

For the web applications exposed to the Internet, AWS WAF is an effective
tool in the security arsenal that helps protect such applications deployed on
AWS cloud from several layer-7 attacks.

Securing applications with load balancer
Elastic Load balancers or ELBs are used to distribute traffic across multiple
targets residing in multiple Availability Zones (AZs). This strategy essentially
increases the availability of an application. There are four types of load
balancers currently supported by AWS – Application Load Balancer (ALB),
Network Load Balancer (NLB), Gateway Load Balancer, and Classic Load
Balancer (legacy). ELBs play a significant role as they often act as the entry
point for the applications. In case of Internet facing ELBs, external traffic first
hits the ELB and are then subsequently distributed across targets. ELB is a
managed service when it comes to maintenance and security of the load
balancer nodes. However, we can still take some steps to ensure better
protection of our applications when the traffic passes through a load balancer.

WAF rules for Application Load Balancer
ALBs can be integrated with AWS WAF. Once a web ACL is created with
rules to safeguard the applications from the layer-7 attacks, we can associate
the regional resource like an ALB with the web ACL. Figure 5.48 shows how
to add an ALB named bpb479-alb to the web ACL from WAF & Shield
Console, as follows:

Figure 5.48: Add an ALB to AWS WAF web ACL

Once this association is done, we can validate this from the ELB Console, by
selecting the ALB (named bpb479-alb) and checking the Integrated
services tab. The particular ALB will be shown as WAF enabled and the
corresponding web ACL will also be displayed. Figure 5.49 shows the status
of an WAF enabled ALB, as follows:

Figure 5.49: AWS WAF enabled Application Load Balancer

Elastic Load Balancing and TLS
Applications can leverage ELB to offload the TLS/SSL handling. We will
primarily focus on Application Load Balancer (ALB) and Network Load
Balancer (NLB) and check the process of enabling Transport Layer Security
(TLS) on them. This entails the use of a (TLS/SSL) secured protocol and
deploying a server-side certificate. The load balancers have two components –
the listeners which listen to specific protocol/port combination for incoming
connections and targets across which the traffic is distributed. The targets are

registered and grouped into target groups and health checks can be configured
on them. Figure 5.50 shows the schematics of a load balancer, as follows:

Figure 5.50: Components of a load balancer

Application Load Balancer (ALB), as the name suggests, is a layer-7
(application layer) load balancer, which means an ALB is application context
aware. ALB supports HTTP/HTTPS listeners only and can intelligently route
traffic based on the HTTP headers, HTTP methods, source IP addresses, query
parameters, path parameters, URI, etc. In case of an ALB, the targets can be
based on EC2 instance IDs, IP addresses, or Lambda functions.
Network Load Balancer (NLB) operates at layer-4 (transport layer). NLB is
unaware of the application context and distributes the traffic solely by
matching protocol and port to the targets. In case of an NLB, the supported
target types are EC2 instance IDs and IP addresses.

TLS termination

TLS termination or SSL offloading is a technique where encryption and
decryption of an SSL secured connection (like HTTPS) is offloaded to the load
balancer, instead of the backend application having to carry out this heavy
lifting. This also makes the management of the TLS certificates easier as we
don't have to distribute the server certificates to a fleet of backend targets or
servers.

Application Load Balancer
Application Load Balancers support TLS termination, thus enabling traffic
encryption between the clients that initiate a TLS or SSL session and the load
balancer. In ALBs, when we create an HTTPS listener, we must deploy a
TLS/SSL server certificate on the load balancer. This certificate can be stored
in AWS Certificate Manager (ACM) or IAM, and it helps to terminate the
front-end connection and decrypts the request to route them to the appropriate
targets based on the listener rules. Thus, the connection between the ALB and
the targets (backend application) is over simple un-encrypted HTTP. Figure
5.51 shows how the incoming requests are over HTTPS and ALB terminates
the connection by use of a certificate (that resides in Certificate Manager) and
then routes the HTTP traffic to the targets (here shown as EC2 instances). Note
that, in case of an ALB, the source IP address presented to the targets is that of
the load balancer (instances) and not the actual source IP. In fact, ALBs
support the X-Forwarded-For header, which carries the client IP address. Refer
to figure 5.51 as follows:

Figure 5.51: SSL offloading implementation

To enable TLS termination on an ALB, all we need to do is configure an
HTTPS listener. Figure 5.52 shows the HTTPS listener configuration for an
ALB. In the EC2 Console, we must click on the Load Balancing | Load
Balancers link from the left navigation panel, then click on the Create Load
Balancer button on the load balancer’s details page, followed by the selection
of Application Load Balancer on the Select load balancer type page.
Once we have provided the basic configuration, network mapping, and security
groups related information, we must configure the Listeners and routing
section. As part of the listener configuration, we must select the HTTPS
protocol on port 443 and associate a default target group that accepts the HTTP
traffic. We also need to specify the SSL certificate that will be used as the
server identity by the ALB. This certificate could be created in ACM or IAM
or could be imported and stored in these two services. This listener
configuration will automatically terminate the TLS/SSL connection at the
ALB.
Note that, at the time of writing, the default ALB security policy is
ELBSecurityPolicy-2016-08. ELB security policies are used to negotiate the
SSL connections between the client and the ALB. A security policy is
essentially a collection of protocols and ciphers, which determines the
algorithms to be used to encrypt and decrypt the traffic. Refer to figure 5.52 as
follows:

Figure 5.52: Configuration of HTTPS listener in an ALB from EC2 Console

Network Load Balancer
NLBs also support the TLS termination and can free the backend applications
from the compute intensive heavy lifting activity of encryption and decryption.
NLBs can also preserve the source IP and present the same to the backend
application. The fundamentals of terminating TLS on NLB are similar to ALB,
except the fact that NLB does not recognize the HTTPS protocol (since NLB
does not understand layer-7 protocol like HTTPS). Thus, in case of NLB, the
associated target group must be configured with TCP and the listener protocol
must be TLS. This configuration will automatically enable the TLS
termination at NLB. Figure 5.53 shows the listener configuration on the
Create Network Load Balancer page in the EC2 console, as follows:

Figure 5.53: Configuration of TLS listener in a NLB from EC2 Console

End-to-end TLS
In most cases, the TLS termination at the load balancer suffices the
requirements of an encrypted channel. However, strict security regulations
might warrant a more stringent use of the TLS encrypted traffic, also known as
the end-to-end TLS encryption. In this case, the load balancer receives an
encrypted request and then passes the request to the targets over a secured
channel. This typically means that the backend certificates need to be
distributed across the targets.

Application Load Balancer
With ALBs, we can create an HTTPS listener and associate an ACM certificate
with the listener. Then, we can associate the HTTPS based target groups, so
that the requests are re-encrypted with the application back-end's certificate.
This could be a self-signed certificate as well. Figure 5.54 shows two types of
certificates – one that is deployed on the load balancer and encrypts the traffic
between the client and the ALB, and the second type that is installed on each
target (here EC2 instances). In case of a containerized application, end-to-end
TLS could be achieved by using a sidecar proxy (like Envoy) along with the
application containers that can terminate the TLS connection and send the
unencrypted traffic to the application containers. Refer to figure 5.54 as
follows:

Figure 5.54: End-to-End TLS implementation

To enable end-to-end TLS on an ALB, we must ensure to create a target
group that will forward the traffic over the HTTPS protocol (on a given
port like 443). Figure 5.55 shows how to configure this from the EC2
Console. We will click on Load Balancing | Target Groups from the left
navigation panel in the EC2 Console. Then, on target group’s details
page, we will click on the Create target group button, and on the
following Specify group details page, under the Basic
configuration section, we will select the target type (Instances or IP
addresses), specify the target group name along with the protocol as
HTTPS and port. Refer to figure 5.55 as follows:

Figure 5.55: Target group configuration for end-to-end TLS in ALB from EC2 Console

Once the target group is created and assuming that the application back-end is
configured with a certificate, the next step is to create the ALB with the
HTTPS listener configuration (as shown in figure 5.52) and associate this
target group with it. With this configuration, the ALB establishes the TLS
connections with the application back-ends using certificates deployed in the
application. These TLS connections use the ELBSecurityPolicy-2016-08
security policy for the SSL negotiations. Moreover, the ALB does not validate
these certificates, and hence they could be self-signed as well.

Network Load Balancer
To enable end-to-end TLS in NLB, we need to configure the target group as
well as the listener with the TLS protocol.

Conclusion

This chapter acts as an introduction to some of the significant AWS services
that can help build secure applications. However, there are several other tools
and processes that can enhance application security. DevSecOps is all about
continuous integrated security with the right tools being baked into the
application build and deployment process. Application security testing
methodologies like static application security testing (SAST) and dynamic
application security testing (DAST) are common practices to perform white
box and black box security testing, respectively. They have different set of
benefits and are effective in different phases of the software development
lifecycle. Application layer penetration testing, or pen test could also prove
very helpful to find specific application vulnerabilities that could be exploited.
Pursuing security best practices and leveraging AWS security services to create
applications are not enough. We must continuously log, monitor, and audit the
application health, look for unsolicited access patterns, fix security defects, and
look for application vulnerabilities that can impact the application ecosystem
and business.
In the next chapter, we will visit logging, monitoring, and auditing on AWS
cloud.

CHAPTER 6
Logging, Monitoring, and Auditing

Introduction
Appropriate monitoring and logging strategies and analytics can help an
organization with audits, aimed at meeting the various compliance
requirements and equip the organization to harvest security insights and
respond quickly and effectively to security incidents. Services like Amazon
CloudWatch, AWS CloudTrail, and other services are fundamental to logging
and monitoring, and helps with governance and auditing in the AWS public
cloud.

Structure
In this chapter, we will cover the following topics:

Amazon CloudWatch
AWS CloudTrail
Necessary logs managed by AWS
AWS Config
Amazon GuardDuty
AWS Security Hub
Amazon Detective
AWS Artifact
AWS Service Catalog

Objectives
In this chapter, we will learn about the integral monitoring, logging, and
auditing services available in the AWS public cloud, and how and when to use
them. We will also learn about the Amazon CloudWatch and AWS CloudTrail
services, including the features and integration capabilities that they support.
We will browse through the essential logs managed by AWS and establish

methods to store and process these log files. In this chapter, we will also
explore AWS Config and scratch the surface of services like Amazon
GuardDuty, AWS Security Hub, AWS Artifact, and AWS Service Catalog,
which play a vital role in governance and auditing to meet the compliance
requirements.

Amazon CloudWatch
Amazon CloudWatch is a fundamental logging and monitoring service in the
AWS service landscape. It can monitor both the AWS resources and the
custom applications that run on the AWS cloud in real-time. CloudWatch can
collect and track metrics. When a defined threshold is breached, it can also
create alarms that watch these metrics and send notifications or make the
automated changes to the monitored resources. Thus, in short, CloudWatch can
help with visibility into resource utilization, application performance, and
operational health.
We will primarily focus on Amazon CloudWatch Logs and touch upon the
other significant components of the Amazon CloudWatch service.

CloudWatch Logs
Amazon CloudWatch Logs is a fully managed and highly scalable service that
could monitor, store, and access the log files generated by Amazon EC2,
Amazon ECS, Route 53, and the other sources, including custom sources.
CloudWatch Logs is used to collect, ship, aggregate, and centralize the logs
from a multitude of systems, applications, and other services in a single
repository. Amazon CloudWatch Logs also provide easy visualization of these
logs along with searching/filtering capabilities.
CloudWatch Logs are categorized into log group and log stream, which are
defined as follows:

Log stream: A log stream is a sequence of log events that has a common
source. Hence, each separate source of the log can make up a separate log
stream.
Log group: A log group is a group of log streams that share the same
monitoring, acc ess control, and retention settings. A single log group can
have multiple log streams associated with it.

Some important services that publish logs to CloudWatch Logs are Amazon
API Gateway, AWS CloudTrail, Amazon ECS, Amazon EKS, AWS Lambda,
Amazon Route53, Amazon SNS, Amazon VPC, etc.

TIP: For the complete list of such services, refer to the following link:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/aws-
services-sending-logs.html

While publishing logs into CloudWatch Logs, AWS services also follow the
same grouping and organization as explained earlier. For example, to access
the logs produced by a Lambda function, we need to first identify the log
group identified by the name /aws/lambda/<lambda-function-name> from
the CloudWatch console and then drill into the specific log streams which
carry the log events. With this knowledge of how logs are organized by
CloudWatch Logs, let's explore how the logs could be collected and shipped to
CloudWatch Logs.

Unified CloudWatch agent
A recommended way to collect logs and metrics (we will discuss CloudWatch
metrics in a subsequent section) is to use the unified CloudWatch agent. The
agent supports multiple operating systems and is highly performant. It also
supports the collection of custom metrics using Statsd or collectd. The agent is
available as a package with the Amazon Linux 2 operating system, which
makes it very easy to install. The following shell command will install the
unified agent:

$ sudo yum install amazon-cloudwatch-agent

For the other operating systems, relevant RPM, DEB, MSI (for Windows)
packages are also available. Needless to say, if we run the unified agent from
the EC2 instances, an appropriate IAM role must be assigned to those
instances. The following Amazon-managed policies could be associated with
the IAM role based on the scenario:

CloudWatchAgentServerPolicy

CloudWatchAgentAdminPolicy

Figure 6.1 shows the IAM policies page with the AWS-managed IAM policies
that could be used with unified CloudWatch agent, as follows:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/aws-services-sending-logs.html

Figure 6.1: AWS-managed IAM policies required for unified agent

The unified agent is configured with the help of an agent configuration file.
The agent configuration file specifies the metrics (including custom metrics)
and logs that need to be collected. While the agent configuration file is written
manually, the unified agent ships with an agent configuration wizard program,
which can help generate this configuration file. To run the wizard (in Amazon
Linux 2), the following command can be used:

$ sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-
agent-config-wizard

The wizard asks a set of questions to customize the configuration file, such as,
whether the agent is being installed on an Amazon EC2 instance or an on-
premise server, whether the server is Linux or Windows, whether we want to
collect custom metrics using Statsd or collectd, etc. The wizard generates a
configuration file named config.json which carries the customizations. The
configuration file has the following three sections:

Agent: The agent section represents the overall configuration of the
unified agent. The wizard, however, does not generate this particular
section.
Metrics: The metrics section specifies the custom metrics for collection
by the unified agent and subsequent publishing of these to Amazon
CloudWatch. However, if we intend to use the agent solely for log
collection, then this section could be omitted.
Logs: The logs section specifies the logs that gets published to Amazon
CloudWatch. The following is a snippet of the logs section that captures
all the logs under the /var/log directory:

"logs": {

"logs_collected": {

"files": {

"collect_list": [

{

"file_path":"/var/log/**",

"log_group_name": "var.logs",

"log_stream_name": "var_log_stream_1"

}

]

}

}

}

The wizard is configured with a predefined set of metrics that are collected by
the unified agent. Table 6.1 lists all the predefined metrics available in the
Linux systems categorized by three detail levels, as follows:

Detail Level Metric Category Metric Name

Basic Memory mem_used_percent

Disk disk_used_percent

Standard CPU cpu_usage_idle, cpu_usage_iowait, cpu_usage_user,
cpu_usage_system

Memory mem_used_percent

Disk disk_used_percent, disk_inodes_free

Diskio diskio_io_time

Swap swap_used_percent

Advanced CPU cpu_usage_idle, cpu_usage_iowait, cpu_usage_user,
cpu_usage_system

Memory mem_used_percent

Disk disk_used_percent, disk_inodes_free

Diskio diskio_io_time, diskio_write_bytes,
diskio_read_bytes, diskio_writes, diskio_reads

Swap swap_used_percent

Netstat netstat_tcp_established, netstat_tcp_time_wait

Table 6.1: List of predefined metrics in Linux

Finally, once the unified agent is configured, we can use the following
command to start it:

$ sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-
agent-ctl -a fetch-config -m ec2 -s -c file:<config file path>

The -a fetch-config option loads the latest version of the agent
configuration file and the -s option starts the agent. At this point, we should
note that the installation, configuration, and starting/stopping of the unified
agent can be carried out by using AWS Systems Manager, that we have
discussed in Chapter 3 “Infrastructure Security”.

Logs Insights
Logs Insights is essentially an extension of Amazon CloudWatch Logs and
provides interactive query interface for the log data. It has log analytics
capabilities, and some visualization features as well. The service is available in
the AWS CloudWatch console, as shown in figure 6.2 as follows:

Figure 6.2: Logs Insights query interface

Figure 6.2 shows the Logs Insights query interface, which is accessible under
the CloudWatch console | Logs | Insights navigation pane. We need to select
the log groups, based on which, we want to run the query, then write the query,
and subsequently run it. The relevant log events are fetched and presented
along with some basic charts.
Let's have a look at some examples leveraging the query language to search
and filter the log events. The following is a simple query that fetches all the
relevant log events from the selected log group and displays, the automatically
generated system fields @timestamp and @message, sorted by @timestamp
and is limited to the first 10 records:

fields @timestamp, @messsage

| sort @timestamp desc

| limit 10

The following link provides a deeper understanding of the query syntax
used with Logs Insights:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_Que
rySyntax.html

Note that, each log event in CloudWatch Logs supports five system fields,
which can be used in the query, as follows:

@message: Contains unparsed and raw log event.
@timestamp: Contains the event timestamp.
@ingestionTime: Contains the time when CloudWatch Logs received the
log event.
@logStream: Contains the name of the log stream, where the log event
was added.
@log: Carries the log-group identifier.

In addition to the system fields, CloudWatch Logs can automatically discover
several other log fields contained in the logs, for the specific log types. For
example, in case of Lambda logs, the following Lambda specific fields can be
used in the Logs Insights query – @requestId, @duration, @billedDuration,
@type, @maxMemoryUsed, @memorySize.

TIP: The following link provides details on the supported log types and
automatically discovered fields:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_Ana
lyzeLogData-discoverable-fields.html

The following query can be used to filter the message objects with ERROR; the
query language supports regular expressions as well:

fields @timestamp, @messsage

| filter @message like 'ERROR'

| sort @timestamp desc

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData-discoverable-fields.html

JSON logs can also be easily queried with Logs Insights. For example, if we
have a JSON log event instance with the structure {"code": '500',
"severity": 'CRITICAL', “error”: “Internal Server Error”}, the event
can be easily queried with the following:
fields @timestamp, @message

| filter code = '500' and severity = 'CRITICAL'

| display error

| sort @timestamp desc

Logs Insights also support aggregation for analysis purposes, which can then
be visualized using Line, Stacked Area, Bar, or Pie chart. The following
example can be used with any Lambda log group to visualize the billed
duration of all the invocations grouped into 10-minute buckets:

fields @timestamp, @message

| stats sum(@billedDuration) by bin(10m)

Finally, we will exemplify a very useful query. This query will help us extract
all the log events (limited by 5000 in this example) pertaining to a log stream
in a log group, by the log stream identifier. In the following example, the log
stream identifier is equal to 2f2e33ec53aa4414b8dc2e6e4464f7ca:

fields @timestamp, @message, @LogStream

| filter @logStream like /2f2e33ec53aa4414b8dc2e6e4464f7ca/

| sort @timestamp desc

| limit 5000

Logs Insights is thus a very powerful tool for near real-time analysis and
visualization of CloudWatch logs.

Along with Logs Insights, there are other similar features available from
CloudWatch Console under "Insights" on the left navigation panel, like
"Containers Insights", "Lambda Insights", and "Application Insights",
which can prove to be very useful in monitoring the containerized
workloads, Lambda functions, and resources with the SSM agents
installed respectively.

Subscriptions for real-time processing of logged data

Subscriptions are a way to get access to real time, base64 encoded and
compressed (gzip format) log events feed from CloudWatch Logs and get the
same delivered to services like Elasticsearch, Kinesis stream, Kinesis Firehose
stream, or Lambda for further processing, analysis, and loading the log event
feed to the other systems.
Let's take a quick tour of the steps involved to create a subscription filter that
sends the log data to an AWS Lambda function, as follows:

1. First, we will create a Lambda execution role along with a trust policy,
which will enable the AWS Lambda service to assume the role.
The following is how the trust policy looks like, let's name this file
trustpolicy.json:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"Service": "lambda.amazonaws.com"

},

"Action": "sts:AssumeRole"

}

]

}

Next, we will create the policy.json file, which defines all the actions
taken by the trusted entity that is allowed to assume the role (in this case,
that's the AWS Lambda service). For the sake of simplicity, we will
simply provide CloudWatch Logs the access to the Lambda function.
However, we must understand that any set of relevant actions could be
taken by the Lambda function, such as pushing the log events to a
different system, etc. The following is how the policy.json file looks
like:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"logs:CreateLogStream",

"logs:CreateLogGroup",

"logs:PutLogEvents"

],

"Resource": [

"arn:aws:logs:*:<account-id>:log-

group:/aws/lambda/CWLogsSubscriptionLambda:log-

stream:*",

"arn:aws:logs:*:<account-id>:log-

group:/aws/lambda/CWLogsSubscriptionLambda"

]

}

]

}

After creating the trust policy and the policy documents, it's time to
actually create the IAM policy and the Lambda execution role (IAM role)
and attach the policy to the role. While these operations could have been
carried out in the AWS management console, we will look at the AWS
CLI option. Let's assume that we have the appropriate AWS credentials
to carry out these activities and that AWS CLI v2 has been configured on
the host where the CLI will be used. Now, fire away the CLI commands
to create the IAM policy, then create the IAM role, and finally, associate
the policy to the role, as follows:

$ aws iam create-policy \

--policy-name CWLogsSubscriptionLambdaPolicy \

--policy-document file://./policy.json

$ aws iam create-role --role-name

CWLogsSubscriptionLambdaRole \

--assume-role-policy-document file://./trustpolicy.json

$ aws iam attach-role-policy \
--role-name CWLogsSubscriptionLambdaRole \

--policy-arn arn:aws:iam::<account-id>:policy/

CWLogsSubscriptionLambdaPolicy

2. The next step is to create the Lambda function (we'll use Node.js for this
example) and deploy the same. We start with the implementation of the

Lambda function. Basically, we want this function to zip (gunzip) the log
event data sent by the sub-scription, parse the JSON structure, and then
simply use console logging to publish the event to CloudWatch Logs. So,
we start by creating a Node.js package and in-stalling the required NPM
dependencies (specifically node-gzip package will be used for
gunzipping the logged data). We must recall here that the subscriptions
al-ways send base64 encoded and gzip compressed log events. Here are
the com-mands to create the project and install dependencies, as follow:

$npm init -y # create the package.json

$npm install --save node-gzip # creates node_modules fodler

with node-gzip pachage installed

The following is how the function implementation might look like (file:
index.js):

// File: index.js

const {ungzip} = require(‘node-gzip’);

const ENCODING_BASE64 = “base64”;

const ENCODING_ASCII = “ascii”;

exports.handler = async function(event, context){

var payload = Buffer.from(event.awslogs.data,

ENCODING_BASE64);

try{

const decompressed = await ungzip(payload);

let result =

JSON.parse(decompressed.toString(ENCODING_ASCII));

// Process the log data and persist

console.log(“Log Event > ”, JSON.stringify(result, null,

2));

context.succeed();

}

catch(e){

context.fail(e);

}

};

Now, let's use AWS CLI to deploy this function. We need to zip the
package.json, index.js and node_modules folder into a ZIP file named
subscription_lambda.zip and use the following command:

$ aws lambda create-function \

--function-name CWLogsSubscriptionLambda \

--runtime nodejs14.x \

--zip-file fileb://subscription_lambda.zip \

--handler index.handler \

--role arn:aws:iam::<account-

id>:role/CWLogsSubscriptionLambdaRole

3. Next, we need to create a resource-based policy to allow CloudWatch
Logs to invoke the Lambda function. The following is the relevant CLI
command:

$ aws lambda add-permission \

--function-name CWLogsSubscriptionLambda \

--principal logs.ap-south-1.amazonaws.com \

--statement-id cwlogsinvoke --action

"lambda:InvokeFunction" \

--source-arn "arn:aws:logs:ap-south-1:<account-id>:log-

group:TestCWLogsSubscriptionLambda:*"

4. Finally, we need to create a subscription filter with the following CLI
command:

$ aws logs put-subscription-filter \

--log-group-name TestCWLogsSubscriptionLambda \

--filter-name sampleFilter \

--filter-pattern "" \

--destination-arn "arn:aws:lambda:ap-south-1:<account-

id>:function:CWLogsSubscriptionLambda"

In the preceding command, the filter-pattern is used for subscribing to a
filtered stream of CloudWatch log events.
In order to test everything that we have done so far, we will put some
sample log events to an already existing LogGroup and LogStream (one
can create a Log Group and Log Stream quite easily from the AWS
Management console or use the aws logs create-log-group and aws
logs create-log-stream CLI commands). We can use the following
CLI command to put the log events to an existing log group named
TestCWLogsSubscriptionLambda and log stream named stream1:

$ aws logs put-log-events \

--log-group-name TestCWLogsSubscriptionLambda \
--log-stream-name stream1 \
--log-events "[{\"timestamp\":1621097629000, \"message\":

\"Sample

CloudWatch Logs Subscription test with Lambda

destination\"}]"

If everything works out, we should see the sample log event that was put
to stream1 of LogGroup TestCWLogsSubscriptionLambda, ending up in
the LogGroup /aws/lambda/CWLogsSubscriptionLambda that the
Lambda writes to (as per the Lambda execution role). Figure 6.3 shows
how the subscription log event looks in AWS Management Console, as
follows:

Figure 6.3: The subscription log event in AWS Management Console

Export logs to Amazon S3
While Logs Insights and subscriptions could be used for near real-time or real-
time analysis and processing of CloudWatch Logs, we can create an export
task to export all the logged data from a CloudWatch Logs log group to an
Amazon S3 bucket, in the form of gzipped files. Log data can take up to 12
hours to become available for export. This can greatly help in custom analysis
and processing of the logged data and optionally load this data to the other
systems. Log data cannot be exported to an S3 bucket that is encrypted with

SSE-KMS. However, we still can export to an S3 bucket that is encrypted
using AES-256.
Let's go through the steps to create an export task and export the CloudWatch
log data to an S3 bucket. We will use AWS CLI for the purpose. At this point,
we assume that we have installed AWS CLI v2 in the host from where we will
fire the commands and the appropriate AWS credentials are configured with
AWS CLI. The relevant steps are as follows:

1. The first step is to ensure that the IAM credentials configured with AWS
CLI, allows full access to Amazon S3 and CloudWatch Logs and read-
only access to IAM. In fact, the read-only access to IAM is required to
issue the list-attached-user-policies command (as shown in the
following code). We could actually issue this command using a different
profile which has the IAM read-only permission. But to keep things
simple, we will assign all the required permissions to the profile user. The
following is the CLI command:

$ aws iam list-attached-user-policies --user-name exporter \
--profile exporter

In the preceding command, we have used the AWS CLI profile of
exporter, which corresponds to a user with the same name, who has the
required permissions. The command should give the following result:

{

"AttachedPolicies": [

{

"PolicyName": "AmazonS3FullAccess",
"PolicyArn": "arn:aws:iam::aws:policy/AmazonS3FullAccess"

},

{

"PolicyName": "CloudWatchFullAccess",
"PolicyArn":

"arn:aws:iam::aws:policy/CloudWatchFullAccess"

},

{

"PolicyName": "IAMReadOnlyAccess",
"PolicyArn": "arn:aws:iam::aws:policy/IAMReadOnlyAccess"

}

]

}

2. Next, we will create an S3 bucket named bpb479-exported-logs in the
ap-south-1 region. Needless to say, an existing bucket could also be used.
However, its best to create a separate bucket for the exported logs. Issue
the following command to create the bucket:

$ aws s3api create-bucket --bucket bpb479-exported-logs \
--create-bucket-configuration LocationConstraint=ap-south-1

\

--profile exporter

3. Now, we will create a bucket policy which will allow CloudWatch Logs
to export the log data to the S3 bucket and apply the policy to the
bpb479-exported-logs bucket.
The following is how the policy file (bucketpolicy.json) might look
like:

{

"Version": "2012-10-17",

"Statement": [

{

"Action": "s3:GetBucketAcl",
"Effect": "Allow",

"Resource": "arn:aws:s3:::bpb479-exported-logs",

"Principal": {

"Service": "logs.ap-south-1.amazonaws.com"

}

},

{

"Action": "s3:PutObject",
"Effect": "Allow",

"Resource": "arn:aws:s3:::bpb479-exported-logs/*",

"Condition": {"StringEquals": {"s3:x-amz-acl": "bucket-

owner-full-control"}},

"Principal": {"Service": "logs.ap-south-1.amazonaws.com"}

}

]

}

Once the policy file is ready, we can use the following command to apply
this policy to the S3 bucket:

$ aws s3api put-bucket-policy --bucket bpb479-exported-logs
\

--policy file://bucketpolicy.json --profile exporter

4. Finally, we must create the export task that will essentially export the log
data from a CloudWatch Logs log group to the S3 bucket. This export
process can typically take anywhere between few seconds to few hours,
depending on the export volume. We will export the log data from an
existing log group named SampleLogGroup. The following CLI command
could be used to create the export task:

$ aws logs create-export-task --profile exporter \
--task-name "sample-export-task-bpb479" \

--log-group-name "SampleLogGroup" \

--from 1620654532000 --to 1620654559000 \

--destination "bpb479-exported-logs" \

--destination-prefix "bpb479-export-task"

We note that the volume of log data exported depends on the "from" and
"to" parameters which represent the start time and the end time,
respectively, of the range of the request (expressed as number of
milliseconds after Jan 1, 1970 00:00:00 UTC). The files are delivered as
gzip files, and the export task organizes the files under the destination-
prefix folder. The S3 URI of a delivered file might look like the
following:

s3://bpb479-exported-logs/bpb479-export-task/b865250c-5737-

44b5-b38b-011520ef759b/2021-05-10-

[$LATEST]2f2e33ec53aa4414b8dc2e6e4464f7ca/000000.gz

In the S3 bucket, these files can be processed by Lambda or persisted in
some other system for further analysis.

CloudWatch metrics and alarms
CloudWatch is often described as a repository of metrics. The AWS services
are designed to place the metrics in this repository and extract the statistics
based on these metrics. We can also put custom metrics (that we define) into
this repository and fetch the statistics based on them. The calculated statistics

could subsequently be represented graphically for visualization and combined
in the CloudWatch dashboards. We could also configure the CloudWatch
alarms based on these metrics, which can perform some actions like sending
out the email notification (using Amazon SNS) or scaling in/scaling out a set
of auto scaled EC2 instances based on some criteria. In short, the CloudWatch
metrics and alarms play an important role in monitoring the applications
deployed on the AWS cloud and the cloud infrastructure that they use.
CloudWatch metrics are essentially the data about the performance of systems,
services, components, etc. There are several AWS services that publish free
metrics to CloudWatch. Among them, Amazon API gateway, Amazon
CloudFront, Amazon CloudWatch Logs, Amazon DynamoDB, Amazon EC2,
and Amazon S3 are significant. Detailed monitoring could be enabled for some
of these resources (e.g., Amazon EC2 instances). CloudWatch stores the metric
data for 15 months. To view the available metrics and search them, we can
select Metrics from the navigation pane in the AWS Management Console (as
shown in figure 6.4). The metrics shown on this page depend on the services
that are being actively used in the AWS account. Refer to figure 6.4 as follows:

Figure 6.4: CloudWatch Metrics in AWS Management Console

The data associated with a metric could be used to generate the graphs for
efficient visualization of the metric activity on the services.
Let's focus on the alarms now, which essentially leverage the metrics.
CloudWatch supports the following two kinds of alarms:

Metric alarm: This type of alarm watches a single metric or result of a
math expression based on the CloudWatch metrics. The alarm can
perform one or more actions like sending notification, auto scaling
action, etc.
Composite alarm: A composite alarm includes a rule expression that is
created based on the alarm states of the other alarms. This type of alarm

goes into the ALARM state only if all the conditions of the rule are
satisfied. While a composite alarm can send a notification, it cannot
perform EC2 or auto scaling actions.

Metric alarms can have the following three possible states:

OK: The metric or expression is within the defined threshold.
ALARM: The metric or expression is outside the defined threshold.
INSUFFICIENT_DATA: The alarm has just started, and the metric is
either not available or enough data is not available to determine the state
of the alarm.

Let's get into action and try to create a metric alarm based on a specific
CloudWatch metric that is generated by Amazon S3. For this, we will use
AWS Management Console. In this example, we will make necessary
configurations to trigger an alarm if the NumberOfObjects of an S3 bucket is
more than two (we are just selecting an arbitrary small number for simplicity).
NumberOfObjects happens to be a daily storage metrics for the buckets that are
monitored by Amazon S3. The alarm will be configured to trigger an Amazon
SNS email notification. Assume that we have already created an Amazon S3
bucket and an SNS topic along with an active EMAIL subscription. The
following are the steps:

1. In the CloudWatch management console, we will proceed with the
creation of an alarm by selecting Alarms on the navigation pane. On the
Specify metric and conditions page, we will click on the Select
Metric button, as shown in figure 6.5 as follows:

Figure 6.5: Specify Metric and Conditions

2. On the next page, we will select S3 | Storage Metrics under the Metrics
section. We must select the actual metric named NumberOfObjects for the

existing S3 bucket named bpb479-exported-logs and click on the
Select metric button, as shown in figure 6.6 as follows:

Figure 6.6: Select metric

3. On the next page, we provide the Statistic as average and an evaluation
Period of one day. This means, the metric will calculate the average
number of objects in a period of five minutes, as shown in figure 6.7 as
follows:

Figure 6.7: Configure aggregation statistic and period

Also, under the Condition section, we select the Threshold type as
Static (which means, a threshold value will be explicitly defined as a
number) and create a rule that defines the alarm condition as Whenever
NumberOfObjects is greater than or equal to 2, as shown in figure
6.8 as follows:

Figure 6.8: Specify threshold value

Under Additional configuration, we will define the number of data
points within the evaluation period that must be breached to trigger the
alarm. In this example, we will define 1 out of 1 data point and treat
missing data as missing, as shown in figure 6.9 as follows:

Figure 6.9: Alarm datapoints

4. On the next page of Configure actions, we will define the Alarm state
that will trigger the Notification action (as shown in figure 6.10) and
select the SNS topic as bpb479-alarm-topic and then click on the Next
button. The other actions that could have been selected based on the

scenario are auto scaling action, EC2 action, and Systems Manager
OpsCenter action. Refer to figure 6.10 as follows:

Figure 6.10: Configure alarm state trigger and SNS notification

5. On the next page, we will give the alarm a name (bpb479-s3-
numberofobjects-alarm) and a description and click on the Next button.
Finally, we can preview the configuration and create the alarm.

Initially, the alarm would be in the INSUFFICIENT_DATA state. If, within a
period of one day, more than or equal to two objects are placed in the S3
bucket named bpb479-exported-logs, then this alarm will go to the ALARM
state and the SNS notification will get triggered, as shown in figure 6.11 as
follows:

Figure 6.11: The alarm goes to the "ALARM" state

Figure 6.12 shows how the alarm notification email sent via Amazon SNS
service looks like, as follows:

Figure 6.12: Sample alarm notification email

CloudWatch events
The Amazon CloudWatch Events delivers the stream of system events
describing the changes to the AWS resources/environment in real-time. We can
create simple rules that match the event source to targets. An event source is an
AWS resource that undergoes a change and generates a CloudWatch Event. A
rule essentially matches the incoming events and routes them to one or more
targets for further processing. Finally, the targets process the events.
CloudWatch Events support several targets, like Kinesis Stream, Lambda
function, SNS topic, SQS queue, Step Functions state machine, SSM Run
command, etc.
Let's create a simple yet useful rule to automate the notifications of any AWS
health event (e.g., issue with the EC2 service in a certain availability zone or
region). The following are the steps:

1. As the first step, we choose Events | Rules from the navigation pane in
AWS Management Console for CloudWatch and click on the Create
Rule button.

2. On the next page, we can select the Event Source which can either be an
Event Pattern or a Schedule (defined by fixed rate or cron expression).

For this example, we will select Event Pattern and build the event
pattern to match the events by service – the service name being Health
and the event type being All Events. The event pattern JSON format can
be previewed as well. The event pattern in the JSON format looks like
the following:

{

"source": [

"aws.health"

]

}

3. On the same page, we can define one or more targets. For this example,
we can use an existing Amazon SNS Topic named bpb479-cw-events-
targets with an active EMAIL subscription. Figure 6.13 shows the source
and target configuration for tracking and notifying the AWS health
events. We must note that, multiple targets could be configured with the
same event source by clicking on the Add target button in the Targets
section. Once the source and target(s) have been configured, we can click
on the Configure details button, as shown in figure 6.13 as follows:

Figure 6.13: Configure event source and target

4. On the next page, we can supply a Name (HealthNotificationRule) and
Description to the rule and mark the State as enabled and then click on
the Create rule button. The required permissions to add the events to
the target(s) is taken care of automatically. Refer to figure 6.14 as
follows:

Figure 6.14: Provide the name and description of the rule

Amazon EventBridge
Amazon EventBridge is a serverless, highly available, and scalable event bus
service. It was formerly called Amazon CloudWatch Events and uses the same
CloudWatch Events API. The default event bus and any rules that we create in
CloudWatch Events are also displayed in the EventBridge console. All the
existing CloudWatch Events features are present in EventBridge. However, we
must note that, as new features are added to EventBridge, they will not get
added to CloudWatch Events. Hence, it is recommended to use EventBridge to
manage the events instead of CloudWatch Events. The most interesting feature
of EventBridge is that it supports the creation of custom event bus, apart from
the default one, which can help in building the event-driven applications.
Figure 6.15 shows the Event buses page of Amazon EventBridge in the AWS
Management Console as follows:

Figure 6.15: "Event buses" page of Amazon EventBridge in AWS Management Console

AWS CloudTrail

AWS CloudTrail essentially records all the actions taken by a user, role, or an
AWS service. These actions could be generated through AWS Management
Console, AWS CLI, AWS SDK, or API calls made by the other services. Thus,
AWS CloudTrail service holds a special place in the monitoring, governance,
and auditing arsenal when working with the AWS public cloud. The service is
automatically enabled when an AWS account gets created and records any
activity in a CloudTrail event. The most recent events captured can be viewed,
searched, and downloaded from Event history in the CloudTrail
Management Console. Figure 6.16 shows how a typical Event history page
looks like. By default, only the create, modify, and delete events appear in
the AWS CloudTrail Management Console, and we can view the events from
the last 90 days. Each event can provide the details on what action was
performed, who or what performed the action, when it occurred, and which
AWS resources were involved. Refer to figure 6.16 as follows:

Figure 6.16: CloudTrail "Event history" page

While Event history can be a good start, it might not be able to serve the
security compliance and auditing requirements of an organization. A better
option is to create one or more trails to generate a continuous and ongoing
record of events and store the same in the Amazon S3 buckets, send the log file
delivery notifications to the S3 buckets in Amazon Simple Notification
Service (SNS) topic, or stream the events to Amazon CloudWatch Logs for
monitoring and further storage and analysis.

AWS CloudTrail Events

An AWS CloudTrail event represents a record of an activity in an AWS
account. There are the following three types of events that can be logged, and
all these types use the same JSON log format:

Management Events: These type of events captures control plane
operations or management operations like ConsoleLogin event, setting
up CloudTrail logging, creation of VPC and subnets, etc.
Data Events: Data events provide information on data plane operations.
These are not logged by default as these are high-volume activities like
AWS Lambda execution activity, Amazon DynamoDB object level
activities on a table, Amazon S3 object level API activity, etc.
Insights Events: This identifies unusual or abnormal activities, user
behaviors, or errors in the AWS account.

Creation of a Trail
A trail is a configuration that we can create to deliver the events in the form of
log files to an Amazon S3 bucket. The Amazon S3 lifecycle policies could be
used to archive the log files in Amazon Glacier to satisfy the compliance
requirements. Moreover, the S3 events could be used to further process these
files with the help of AWS Lambda, Amazon SQS, or Amazon SNS.
There are primarily two distinct types of trails – one that applies to all the
regions and the other that applies to a single region. The recommended
practice is to create a trail that applies to all the regions, which enables us to
capture all the events across all the regions in an AWS account. This is also the
default option while creating a trail from the AWS CloudTrail console.
There is a special type of trail, apart from the two that we have already
introduced – an organization trail. An organization trail can help capture all
the logs pertaining to all the member accounts in an organization defined in
AWS Organization, which in turn can help define a uniform CloudTrail event
logging strategy for the entire organization.
The following is the simplest form of AWS CLI command to create a single
region trail named bpb479-sample-trail:

$ aws cloudtrail create-trail --name bpb479-sample-trail \
--s3-bucket-name bpb479-trails-bucket \
--profile cloudtrailcreator

If invoked successfully, the command should return a JSON response similar
to what is shown in the following response snippet:

{

"Name": "bpb479-sample-trail",

"S3BucketName": "bpb479-trails-bucket",

"IncludeGlobalServiceEvents": true,

"IsMultiRegionTrail": false,
"TrailARN": "arn:aws:cloudtrail:ap-south-

1:137XXXXXXXXX:trail/bpb479-sample-trail",

"LogFileValidationEnabled": false,

"IsOrganizationTrail": false

}

The next step is to start the logging process with the following CLI command:

$ aws cloudtrail start-logging --name bpb479-sample-trail \
--profile cloudtrailcreator

We will assume that an AWS CLI profile named cloudtrailcreator has
already been created with the required permissions to create the trail. In
addition, we will also assume that an Amazon S3 bucket named bpb479-
trails-bucket is already created and configured with the appropriate bucket
policy. A sample bucket policy is shown as follows:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",
"Principal": {

"Service": "cloudtrail.amazonaws.com"
},

"Action": "s3:GetBucketAcl",
"Resource": "arn:aws:s3:::bpb479-trails-bucket",
"Condition": {}

},

{

"Effect": "Allow",
"Principal": {

"Service": "cloudtrail.amazonaws.com"

},

"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::bpb479-trails-bucket/*",
"Condition": {}

}

]

}

The bucket policy essentially allows the CloudTrail service to call the
GetBucketAcl and PutObject action on the selected S3 bucket.
The following is the AWS CLI command to create a multi-region trail named
bpb479-sample-mr-trail:

$ aws cloudtrail create-trail --name bpb479-sample-mr-trail \
--s3-bucket-name bpb479-trails-bucket \

--is-multi-region-trail \
--profile cloudtrailcreator

To create an organization trail, either of the following Boolean flag could be
used either during the creation of the trail or trail update:

is-organization-trail

no-is-organization-trail

The JSON log files delivered to the Amazon S3 buckets are in the gzip format
(.gz extension) and CloudTrail ensures to store these files region wise and date
wise. A typical hierarchy of folders within the S3 bucket looks like the
following:

bpb479-trails-bucket/AWSLogs/<account-id>/CloudTrail/<region-

code>/yyyy/mm/dd/

Trail configuration
In the following sub-sections, we will introduce some of the important features
that can be used to configure a trail. These features could be set during the
creation of the trail, or the trail could be modified later to enable these features.

Encryption support for log files

When the log files are delivered by AWS CloudTrail to an Amazon S3 bucket,
they are encrypted using SSE-S3 (described in Chapter 4: Data Security) by
default. To add more control and manageability of the encryption keys, we can
choose to use the SSE-KMS option (described in Chapter 4: Data Security).
With this option, we need to create a new CMK or select an existing CMK to
encrypt the log files. Figure 6.17 shows how we can select an existing AWS
KMS CMK during the creation of a trail from the AWS CloudTrail console.
We should note that, when creating a trail from the AWS Management
Console, the SSE-KMS encryption option is automatically selected. Refer to
figure 6.17 as follows:

Figure 6.17: Selection of an existing CMK for the trail

The following CLI command could be used to specify the CMK key-id to an
existing trail:

$ aws cloudtrail update-trail --name bpb479-sample-trail \
--kms-key-id <key-id OR key alias with 'alias/' prefix OR full
alias ARN OR full key ARN>

The CMK should have an appropriate key policy to allow the CloudTrail
service to use the key.

Log file integrity
This feature helps determine if the log files were modified or deleted after
CloudTrail delivered them to the Amazon S3 bucket. CloudTrail creates a hash
using the SHA256 algorithm for every log file that is delivered to Amazon S3.
CloudTrail also delivers an hourly digest file (to a separate folder within the
same bucket) that references the log files delivered in the last hour and the
corresponding hashes. Each digest file is signed by the RSA private key of a

key pair. The public key can then be used to validate the digest file. Figure
6.18 shows the Log file validation option available (under Additional
Settings) to enable the log file integrity check from the CloudTrail console, as
follows:

Figure 6.18: Enable the log file integrity validation

An existing trail could be updated with a Boolean flag – enable-log-file-
validation or no-enable-log-file-validation – using the following AWS
CLI command:

$ aws cloudtrail update-trail --name bpb479-sample-trail
--enable-log-file-validation

To validate the CloudTrail logs for a given period, we can use the validate-
logs command. This command uses the digest files delivered to the S3 bucket
for validation. The start-time option specifies that the log files delivered on
or after the specified UTC value should be validated. There is also an optional
end-time option to bracket the time, as follows:

$ aws cloudtrail validate-logs \
--trail-arn 'arn:aws:cloudtrail:ap-south-

1:137XXXXXXXXX:trail/bpb479-sample-trail' \

--start-time 20210419T19:00:00Z

Notification for log file delivery
Every time a log is delivered to the selected Amazon S3 bucket by AWS
CloudTrail, we can choose to receive the SNS notification for every such
delivery. This can help process the files for further analysis automatically. For
example, we can create a new SNS topic or use an existing one with
subscriptions to AWS Lambda. AWS Lambda can then pick up the log file
from the S3 location and further process it. Figure 6.19 shows the option to
associate an SNS topic to send the notifications on the log file delivery from

the AWS CloudTrail console. This option is available under Additional
Settings on the create trail page, as shown in figure 6.19 as follows:

Figure 6.19: Configure log file delivery notification

The following AWS CLI command could be used to integrate an existing SNS
topic with an existing trail:

$ aws cloudtrail update-trail --name bpb479-sample-trail \
--sns-topic-name <topic-name>

The SNS topic still needs to have the appropriate access policy to allow
CloudTrail to place the delivery event in the topic.

Event selectors and advanced event selectors
Event selectors can be used to specify the event settings for a trail. By default,
if an event selector is not used, a trail is configured to log all the read and write
management events only. However, when used, CloudTrail evaluates the event
selector for all the trails when any activity occurs in the AWS account.
Suppose the event is found to match an event selector, the trail processes and
logs that event. The basic event selectors can be used to log the management
events, data events, and insights events. Currently, we can log the data events
on the following three resources:

Amazon S3 API activities at the object level (for example, GetObject,
PutObject, etc.)
AWS Lambda function invocation activities
Amazon DynamoDB data activities

The advanced event selectors are used to create the fine-grained selectors that
essentially help control the costs by logging only the selective data events,
based on eventSource, eventName, eventCategory, and several properties of

an event. We must remember that both EventSelector and
AdvancedEventSelector cannot be applied to a single trail.
The following is the AWS CLI command to configure the standard event
selectors for a trail:

$ aws cloudtrail put-event-selectors \
--trail-name bpb479-sample-trail \

--event-selectors '<json-value>'

The default standard event selector JSON format looks like the following:

[

{

"ReadWriteType": "All",

"IncludeManagementEvents": true,

"DataResources": [],

"ExcludeManagementEventSources": []

}

]

The advanced event selectors could be configured for a trail with the following
CLI command:

$ aws cloudtrail put-event-selectors \
--trail-name bpb479-sample-trail \

--advanced-event-selectors '<json-value>'

The advanced event selector JSON structure looks a little different from the
standard selectors. The following is an example:

[

{"Name": "Log PutObject events for a specifc S3 bucket",

"FieldSelectors": [

{"Field": "readOnly", "Equals": ["false"]},

{"Field": "eventCategory", "Equals": ["Data"]},

{"Field": "resources.type", "Equals": ["AWS::S3::Object"]},

{"Field": "eventName", "Equals": ["PutObject"]},

{"Field": "resources.ARN", "Equals": ["arn:aws:s3:::bpb479-

bucket/"]}

]

}

]

For a comprehensive JSON structure pertaining to the standard and
advanced event selectors, please refer to the following AWS CLI
reference link:
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-
selectors.html

Monitoring a trail
A trail could be optionally configured to send the events to CloudWatch Logs.
Subsequently, CloudWatch Logs could be used to monitor specific API calls
and events in the AWS account. Furthermore, the CloudWatch Logs metric
filters could be defined and assigned to the CloudWatch metrics and the
CloudWatch alarms could be configured to send out the notifications (using
Amazon SNS) when any specific event of interest occurs in the account.
Figure 6.20 shows the configuration required to send the trail events to
Amazon CloudWatch during the creation of a trail, as follows:

Figure 6.20: Configuration to send a trail to CloudWatch Logs

To configure an existing trail to stream the events into CloudWatch Logs using
AWS CLI, we can use the following command:

https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html

$ aws cloudtrail update-trail --name bpb479-sample-trail \

--cloud-watch-logs-log-group-arn <CloudWatch Log Group ARN> \

--cloud-watch-logs-role-arn <Role ARN>

CloudWatch Log Group ARN represents the log group to which the CloudTrail
logs will get delivered and role ARN specifies the IAM role that the
CloudTrail service will assume to write the log streams and put the log events
to the log group.

Important logs managed by AWS
While the applications can create their own logs and then ship them to Amazon
CloudWatch Logs for further analysis, there are some special logs that are
created and managed by AWS and these logs are shipped to Amazon S3 and/or
Amazon CloudWatch Logs. Here’s the list of some noteworthy AWS managed
logs:

CloudTrail Logs: AWS CloudTrail Logs can be pushed into the Amazon
S3 buckets and could also be streamed to CloudWatch Logs. We have
dedicated an entire section on AWS CloudTrail and associated logging in
this chapter.
VPC Flow Logs: VPC Flow Logs help to capture the details on the kind
of traffic accepted or rejected at the network interface level. VPC Flow
Logs can be created at the VPC level, subnet level, or the individual
network interface level. Flow logs can be streamed into CloudWatch
Logs. Amazon S3 can also act as another delivery destination for VPC
Flow Logs. One can use AWS CLI to deliver these logs directly to S3.
The following is the format for the VPC Flow log event:

<version> <account-id> <interface-id> <src-addr> <dest-addr>

<src-port> <dest-port> <protocol-number> <packets> <bytes>

<start-time> <end-time> <action> <log status>

Sample event: 2 1xxxxxxxxxxx eni-xxxxxxxx 172.31.10.32 172.31.10.74
443 8080 6 3 164 1618393937 1618393988 ACCEPT OK
Route 53 Query Logs: Amazon Route 53 could be configured to log the
public DNS queries received by Route 53. These logs are sent to Amazon
CloudWatch Logs.
The following is the format for the DNS Query log event:

<log-format-version> <query-timestamp> <hosted-zone-id>

<query-name> <query-type> <response-code> <layer-4 protocol>

<edge-location> <resolver-ip> <EDNS-client-subnet>

Sample event: 1.0 2021-02-14T08:15:50.235Z Z123456789101
example.com AAAA NOERROR TCP IAD12 192.168.3.1
192.168.222.0/24
CloudFront Access Logs and Real-time Logs: Amazon CloudFront can
be configured to create detailed log events when CloudFront receives a
request. These standard or access logs are saved in an Amazon S3
bucket. These log files contain detailed information on every user request
received by CloudFront. As usual, SSE-KMS could be enabled on the S3
bucket for a better control on the CMK. Log files are delivered to S3 in a
gzip format (.gz extension). CloudFront can stream the real-time logs as
well. These log streams could be configured to be delivered to Amazon
Kinesis Data Streams.
Load Balancer Access Logs: Access logging is disabled by default on
Elastic Load Balancer (ELB). However, when enabled, they capture
detailed information on the requests that are sent to ELB. ELB stores the
logs as compressed files in a specified Amazon S3 bucket. Each access
log is encrypted with SSE-S3 automatically before being stored in the S3
bucket.
Amazon S3 Server Logs: While we can leverage the Amazon S3 server
logs to capture all the actions taken by the users, roles, or other AWS
services on Amazon S3 resources, AWS recommends using AWS
CloudTrail for the same. It is easier to record the bucket and object level
actions with CloudTrail. As discussed in the section dedicated to AWS
CloudTrail, using CloudTrail has several advantages, like forward logs to
other systems, cross account log delivery, integrity validation, etc.
However, the Amazon S3 server logs carry no additional cost (other than
the charges pertaining to their storage) and are delivered within a few
hours as well as space separated and newline character-delimited files.

AWS config
AWS Config is a regional service that helps track the configuration changes
made to the AWS resources and relationships between these resources, over
time. This can greatly help in compliance audits, security analysis, and

troubleshooting configuration changes. The following significant AWS
resource types are supported by AWS Config: Amazon CloudFront, Amazon
API Gateway, Amazon EBS, Amazon EC2, Amazon ECS, Amazon EKS,
Amazon ECR, Amazon RDS, Amazon S3, Amazon VPC, etc.

TIP: For an exhaustive and comprehensive list of supported resources,
refer to the following link:
https://docs.aws.amazon.com/config/latest/developerguide/resource-
config-reference.html

AWS Config can monitor the global resources, such as IAM, and ensure that
the IAM users, groups, roles, and policies comply with the defined baselines.
We must note that while setting up AWS Config, we must explicitly check the
Include global resources checkbox in the AWS Config console to enable
this behavior.
Figure 6.21 shows a snapshot of how AWS Config is setup in AWS
Management Console with options to record all the supported resources or
specific resource types, the choice to include global resources and
creation/selection of the IAM role for AWS Config to retrieve the necessary
details from each AWS resource, as follows:

Figure 6.21: AWS Config setup in AWS Management Console

Once AWS Config has been set up, the dashboard will provide the inventory of
resources, compliance status, non-compliant rules, etc. Figure 6.22 shows how
a typical dashboard might look like, as follows:

https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html

Figure 6.22: AWS Config dashboard

Delivery of configuration items
AWS Config can deliver the configuration items through the following
channels:

Amazon S3 Bucket: We can choose an Amazon S3 bucket where the
configuration history and configuration snapshot files can be delivered.
The bucket could be selected either from the same AWS account or from
a different AWS account. An appropriate bucket policy should be applied
to the S3 bucket.
Amazon SNS Topic: The SNS topic could be configured to stream all
the configuration changes and notifications. The topic could be from the
same AWS account or another account. The access policy needs to be
appropriately configured for the SNS topic.

Figure 6.23 shows the various delivery methods that can be selected during the
AWS Config setup in the AWS Management Console, for the delivery of the
configuration history, changes, or snapshots, as follows:

Figure 6.23: AWS Config delivery method selection

Config rules
To evaluate the configuration settings of the AWS resources, AWS Config
leverages the AWS Config rules. The Config rules represent the desired or
ideal state of configuration settings for these resources. AWS Config
continuously tracks the changes made to the AWS resources and checks
whether these changes violate the conditions specified in the config rules. If a
resource violates the rule, it is flagged (along with the rule) as NON_COMPLIANT.
There are two types of rules supported by AWS Config, which are as follows:

AWS-managed rules: The AWS-managed rules are predefined rules by
AWS Config to assess and evaluate a set of AWS resources. These rules
can be customized to fit specific needs. There are 130+ managed rules at
the time of writing this book. Some interesting managed rules that can be
selected as part of the AWS Config setup are defined as follows:

cloudtrail-enabled: This rule checks if AWS CloudTrail has been
enabled in the AWS account. Similar related rules are cloud-trail-
log-file-validation-enabled, cloud-trail-encryption-
enabled, cloud-trail-cloud-watch-logs-enabled, etc.

restricted-ssh: This rule checks if the unrestricted SSH access is
allowed in any security group.
ec2-instance-no-public-ip: This rule checks if any EC2 instance
is associated with a public IP address, and if so, the rule is
NON_COMPLIANT.
encrypted-volumes: This rule checks if the EBS volumes attached
to the EC2 instances are encrypted.
iam-password-policy: This rule checks if the account password
policy for the IAM users meets the specified requirements.
iam-root-access-key-check: This rule checks whether the root
user access key exists. If so, the rule is NON_COMPLIANT.
iam-user-mfa-enabled: This rule checks if the AWS IAM users
have MFA enabled.

There is a unique sub-type of managed config rule known as service
linked AWS Config rule. These are owned by the AWS service teams and
we cannot edit these rules. Such rules support the other services to create
the AWS Config rules in the AWS account.
Custom rules: Custom rules, on the other hand, are essentially the AWS
Lambda functions that contain the logic to assess the compliance of the
AWS resources and send the evaluation results to AWS Config. The
Lambda function needs to be associated with the rule. The rule, in turn,
can invoke the function in response to the configuration changes or
periodically.

Aggregator
An aggregator is a special AWS Config resource type that can help collect the
AWS Config configuration and compliance data in situations where there are
multiple AWS regions or several AWS accounts or an AWS Organization (with
AWS Config enabled) involved. Essentially, all the recorded data are
aggregated from multiple sources (for example, regions, accounts, etc.) and
presented in an aggregated dashboard view. The aggregator is typically defined
in the aggregator account, and then the source accounts or the organization
along with the regions are selected to create the aggregator. The recorded data
from the source accounts gets replicated to the aggregator account. The
aggregator, in turn, could be used to create a single pane of glass for all the
configuration and compliance data.

Amazon GuardDuty
Amazon GuardDuty is a regional intrusion detection system or intelligent
threat detection service that continuously monitors three AWS-managed log
files to detect malicious behavior and report findings. GuardDuty monitors the
following logs:

CloudTrail Event Logs (management event logs and S3 data event logs)
VPC Flow Logs
Route 53 (DNS) Logs

GuardDuty analyses these logs based on the configured rules and attempts to
detect threats like Bitcoin mining, DNS exfiltration, Trojans, SSH brute-force,
unauthorized and unusual data access, etc. The service categorizes the alerts as
findings and gives each finding a severity (high, medium, low).
GuardDuty leverages the threat intelligence feeds (malicious IP lists and
domains) and machine learning to identify malicious activities in the AWS
environment.

AWS Security Hub
AWS Security Hub provides a centralized, comprehensive view of the state of
security in an AWS account or AWS Organization. It acts as a single pane of
glass across multiple security and compliance tools and helps ensure that our
infrastructure meets the compliance requirements and security alerts gets
prioritized. AWS Security Hub is integrated with several AWS security
services (as shown in figure 6.24) as well as the third-party security solutions
(like AlertLogic, Twistlock, Qualys, Symantec, Barracuda, etc.). Once enabled,
these services can push the security findings automatically to AWS Security
Hub in a standardized format known as AWS Security Finding Format
(ASFF). Refer to figure 6.24 as follows:

Figure 6.24: AWS Security Hub integrations and features

AWS Security Hub starts to receive the security and compliance findings
which follow a normalized severity scoring system, from various integrated
security tools and services. The security findings are aggregated and
prioritized. AWS Security Hub also performs automated compliance checks
(like CIS AWS Foundations Benchmark, etc.). The compliance checks have a
dependency on AWS Config, and as such, AWS Security Hub requires AWS
Config to be enabled (figure 6.25). AWS Security Hub also recommends
enabling AWS Organizations, which helps centralize the findings from all the
member accounts and automatic detection of new accounts when they join the
organization. Refer to figure 6.25 as follows:

Figure 6.25: Enabling Security Hub from AWS Security Hub Console

AWS Security Hub is integrated with Amazon EventBridge and it sends all the
new findings or updates to the existing ones as events to Amazon EventBridge.
We can also select the findings of interest and take custom actions. The custom
actions are created with a friendly name and custom action ID that must be
unique for each AWS account. The custom actions are emitted as events and
delivered to Amazon EventBridge with a custom action ID. This custom action
ID is used to match against an EventBridge rule. These rules, in turn, can
define targets like Lambda, Step Functions, SNS topic, SQS queue, etc. These
services can further process the data and then send the data to the ultimate
destinations like Slack, PagerDuty, SIEM solutions, incident response and
management tool, etc.

Amazon Detective

Amazon Detective is an advanced, regional security analytics service that can
help investigate and identify the root cause of the security issues. Once
enabled, Amazon Detective automatically collects the log data from various
resources like VPC Flow Logs, CloudTrail Logs, Amazon GuardDuty
findings, etc., and subsequently runs machine learning, statistical analysis, and
graph theory to generate insightful visualizations that can help with faster and
efficient security investigations. Amazon Detective can maintain the
aggregated analytical data up to a year. While Amazon Detective can be used
directly from Detective Console, it is also integrated with the security
investigation services like Amazon GuardDuty and Amazon Security Hub and
can be easily invoked from these services as well.
When Amazon Detective is enabled for a master account, it creates a security
behavior graph from the various Amazon Detective data sources. This graph
model helps provide a unified interactive view of users, resources, and
interactions between them over time. In a multi account scenario, when the
member accounts accept the invitation of the master, the VPC flow logs,
CloudTrail management events, and GuardDuty findings from these member
accounts flow into the same behavior graph of the master. Refer to figure 6.26
as follows:

Figure 6.26: Enabling Security Hub from AWS Security Hub Console

AWS Artifact
AWS Artifact is a central repository for all the AWS security and compliance
reports, or in short, audit artifacts. AWS Artifact has two primary Use cases –
reports and agreements. The AWS Artifact reports provide on-demand
download facility for documents like AWS ISO certifications, Service
Organization Control (SOC), and Payment Card Industry (PCI) reports.
These AWS reports are generated from the third-party auditors who have
reviewed and verified the security standards and regulations followed in the
AWS cloud. These reports could be handed over to the auditors as guidelines
to evaluate our own cloud infrastructure on the AWS cloud. They can also be
used to assess the effectiveness of the applied controls.

The AWS Artifact agreements could be used to review, accept/terminate
agreements about the AWS account or AWS Organization as a whole, where an
agreement could be accepted on behalf of all the accounts present in the
organization.
It is customary and considered a best practice to provide access to AWS
Artifact to an IAM group meant for the auditors or a specific group that
requires access to download reports and/or manage agreements.
Figure 6.27 shows how to select and download an AWS Artifact report from
the AWS console, as follows:

Figure 6.27: Selection of AWS Artifact report and option to download

AWS Service Catalog
AWS Service Catalog is a regional service that can help organizations to create
and manage approved catalogs of IT services, which the end users can then
access through a personalized portal. The service thus promotes centralized
management, standardization, fine-grained access control, and self-service. An
IT service is referred to as a product, that is deployed on AWS. A product can
comprise of one or more Amazon EC2 instances, Amazon EBS volumes,
databases, networking components, packaged applications (from AWS
marketplace), etc. Essentially, a product can range from a single virtual
machine to a full-fledged multi-tier web application and is created by
importing the AWS CloudFormation templates. Products are versionable.
A portfolio is defined as a collection of products along with the configuration
information and it helps manage who can access specific products and how

they can access these products through permissions and constraints.
AWS Service Catalog supports two types of users – administrators and end
users. The administrators create and manage the catalog of products, organize
them into portfolios, and grant the required permissions to the end users. The
administrators are responsible for the creation of the CloudFormation
templates as well, along with the necessary constraints and IAM roles.
The end users or users, on the other hand, launch specific products from the
AWS management console, using credentials supplied to them. The
permissions are granted to the users based on the operational requirements.

Conclusion
In this chapter, we learned that AWS provides a compelling collection of
services that could be used for logging, monitoring, and auditing. While
Amazon CloudWatch and AWS CloudFront are the essential services that
could be leveraged, services like AWS Config, Amazon GuardDuty, AWS
Security Hub, Amazon Detective, AWS Artifact, AWS Service Catalog, etc.,
deserve special mention.
In the next chapter, we will focus on the security best practices. These best
practices will help us create a reliable and secure AWS cloud environment for
the applications and workloads.

CHAPTER 7
Security Best Practices

Introduction
The security posture of an enterprise lies in the spectrum. If the posture is too
loose, there can be security breaches and loss of customer confidence and trust.
Whereas, if it is too strict or tight, it might lead to loss of agility and security
teams being treated as blockers to progress and innovation. The ideal goal
should be to reach the Goldilocks zone based on the security context. In
Astrophysics, the Goldilocks zone refers to the habitable zone around a star
where the conditions are favorable for life. In security, it is used to refer to the
security posture that is effective and strikes the right balance. The security
philosophy is pivoted around the centralized administration and delegation of
the authority, governed by the separation of duties and principle of least
privilege. This chapter will discuss some of the recommended security best
practices on the AWS cloud, which helps in achieving the harmony of security
controls and processes.

Structure
In this chapter, we will cover the following topics:

Shared responsibility model (revisited)
IAM best practices
Infrastructure security best practice
Data security best practices
Application security best practices
Logging and monitoring best practices

Objectives
In this chapter, we will learn about the best practices related to AWS security.
With these best practices, we will be able to build secure infrastructure,

environments, and applications from the ground up on the AWS cloud. We will
start by recounting the tenet of shared security model, and then visit each
important layer starting with IAM and infrastructure, and then covering data
and application security on the way. Finally, we will take a quick look at the
best practices related to monitoring and logging in AWS.

Shared responsibility model
While we have provided an in-depth coverage of shared responsibility model
in Chapter 1: Introduction to security in AWS, the topic deserves a revisit in
this chapter on security best practices. The model essentially requires both
AWS and its customers to collaborate and work together towards meeting the
security objectives. AWS is responsible for the 'security of the cloud', while
customers are responsible for the 'security in the cloud'.
AWS is responsible for the security of its global infrastructure that includes
regions, availability zones, and endpoints. But, when it comes to the AWS
services, things are not so straightforward. AWS offers a wide variety of
infrastructure and platform services which can be broadly categorized into the
following two service types:

Infrastructure Services: For these types of services, which primarily
include compute services (like Amazon EC2) and the other related
services (like Amazon EBS, Amazon VPC, etc.), we, the customers,
control the operating system and anything installed or configured on top
of it, which includes the access control and applications hosted on the
computer. AWS controls the hypervisor layer along with the physical
hardware, and the related infra controls the hypervisor layer along with
the physical hardware and related infra.
Abstract Services: Services like Amazon S3, Amazon DynamoDB,
Amazon SQS, etc. fall in this category. The customers generally access
the service endpoints via APIs and are responsible for classifying and
managing the data and leveraging the IAM tools provided by the
services. AWS is responsible for the underlying infrastructure, operating
system, service components, integration with AWS IAM, etc.

In addition, one may also hear about 'Container Services' as a service type in
the shared security model parlance. However, the delineation between the
container services and abstract services is not quite simple. The container
services are just less abstract than their 'abstract' counterparts. The abstract

services also include Amazon RDS and Amazon EMR, where AWS manages
the operating system (including patching) and the application platform. The
security of the data, firewalls, and other IAM features are the responsibility of
the customer.

IAM best practices
AWS Identity and Access Management (IAM) provides the building blocks
for creating a highly reliable and secure AWS based application ecosystem.
This section will discuss some of the crucial best practices that can help us
leverage the most out of AWS IAM.

Safeguarding the account root user
One of the foremost things to take care of, right after the creation of an AWS
account, is to take appropriate measures to protect the AWS account root user.
The root has enormous power (full access to all the resources within the AWS
account), and hence we should make sure that this kind of power does not land
into the wrong hands. The following are some of the steps to protect the root:

Delete the root account's access keys (access key ID and secret access
key) and never create any programmatic access key for the root. To delete
any existing access key, we can log in to the AWS management console
with the root credentials and access the My Security Credentials page
from the drop-down menu that appears when the username is clicked on
the top panel, as shown in figure 7.1 as follows:

Figure 7.1: Access "My Security Credentials" page

Once on the My Security Credentials page, browse the Access keys
section and check if any access key exists. If so, delete the same. Refer to
figure 7.2 as follows:

Figure 7.2: Remove any access keys from "Your Security Credentials" page

Create a strong password policy to help protect the account level access
from the AWS management console. The default password policy should
suffice for most purposes. However, if some further stringent policy is
required, the default password policy could be tweaked or a new policy
could be created on the Account Settings page from the IAM console.
Refer to figure 7.3 as follows.

Figure 7.3: Apply a strong password policy

Lock the AWS account root user password and never use it for the day-
to-day activities.
Enable multi-factor authentication (MFA) on the AWS root user account.
This provides an additional layer of security on top of the password.
Figure 7.4 shows how the MFA section might look like, once an MFA
device is configured, as follows:

Figure 7.4: Configure multi factor authentication for root user

Creating and managing IAM users/groups
To perform the day-to-day activities in the AWS account, we should create the
IAM users and give them unique credentials (credentials should never be
shared) to log into the AWS management console. These credentials could
follow a strict password policy and should be required to change right after the
first login by the user. Additionally, multi-factor authentication (MFA) could
be set up for each user.
As for the permissions, it's always a good idea to logically group multiple IAM
users in a single group and then assign the permissions to the group instead of
directly assigning them to the individual users. All the users in a group inherit
the permissions assigned to the group. This essentially makes permission
management much easier.
The groups and users can be created and assigned permissions from the IAM
console. Figure 7.5 shows the IAM console with two groups – one group
(named administrators) has two users in it, shown as follows:

Figure 7.5: IAM groups

Following the principle of least privilege
While creating the IAM policies, we should follow the standard security
practice of least privilege. This means that we should grant only the
permissions required to perform a set of tasks, nothing more. Thus, it is
advised to start with a minimum set of permissions and add additional
permissions only when required. The following is an example to understand
this better.
Let's assume we want to create a lambda function which will carry out some
specific set of activities. CloudWatch logging is one such activity and we will
concentrate on this logging activity for the purpose of our explanation.
Normally, to write to CloudWatch logs, three permissions are required –
logs:CreateLogGroup, logs:CreateLogStream, and logs:PutLogEvents. If
we follow the principle of least privilege, there is no need to provide a lambda
function with the permission to create a new log group. A log-group with the
name /aws/lambda/<lambda-name> could be created separately. The lambda
then could be given the permissions to create the log streams in that particular
log group and put the log events in the respective log streams. The following is
how the IAM policy statement snippet may look like (the region and account
ID need to be replaced by actual values):

{

"Effect": "Allow",

"Action": [

"logs:CreateLogStream",

"logs:PutLogEvents"],

"Resource": [

"arn:aws:logs:<region>:<acct-id>:log-group:/aws/lambda/<lambda

name>:log-stream:*"]

}

It is important to follow the practice of regular review of each IAM policy to
ensure that they grant the least privilege that is required to perform only the
necessary actions. The IAM console provides some useful tools for the purpose
of review, which are as follows:

Access Level: The Permissions tab on the policy summary page has a
specific column for access level detail (figure 7.6). It can be Limited or
Full. We need to watch out for specific actions under the Limited access
level and Full access level. Refer to figure 7.6 as follows:

Figure 7.6: Access level

Access Advisor: The Access Advisor appears as a tab on the IAM
policy summary page (figure 7.7) and helps set the permission guardrails.
It provides details like which entities accessed the policy or role and
when it was last accessed. This information provides insights into
whether the policy or role is currently being used or not, and by whom.
Refer to figure 7.7 as follows:

Figure 7.7: Access advisor

Access Analyzer: The AWS IAM Access Analyzer can help us identify
the resources in AWS Organization and the related accounts that are
shared with the external parties or entities (another AWS account, an
IAM user/role, federated user, an AWS service, etc.). The Access
Analyzer generates a finding against each instance of a resource that is
shared with an external entity (like cross-account roles, publicly
accessible S3 buckets, etc.) and thus helps identify the unintended access
to the AWS resources and data. The Access Analyzer is easily accessible
from the IAM management console. Once enabled, the analyzer provides
findings for the entire AWS Organization or account.

Using AWS managed and custom policies
Following the principle of least privilege is easier said than done. It requires
detailed comprehension of the IAM policies, and more importantly,
understanding of what the user or group needs to perform within the AWS
account. Moreover, such policies need to be tested as well. However, to kick-
start our IAM journey, AWS provides us with the AWS managed policies.
These are the IAM policies curated, managed, and maintained by AWS and
they work for most of the common use-cases. Figure 7.8 shows the available
AWS managed policies, when filtered by S3. We must note here that these
AWS managed policies range from FullAccess to ReadOnlyAccess. The
orange colored 'box' icon alongside the policy name signifies that the policy is
managed by AWS. Refer to figure 7.8 as follows:

Figure 7.8: AWS managed policies

When the AWS managed policies are not enough, we can also use the
customer managed policies. These are custom policies that we can define and
fine tune to suit our needs. An easy way to start with the creation of custom
policies is to use the Visual Editor available during the Create policy
operation from the IAM management console, as shown in figure 7.9 as
follows:

Figure 7.9: Visual policy editor

The custom policies are undoubtedly better than the inline policies associated
with a single IAM identity (user, group, or role). The challenge with the inline
policies is that they cannot be reused, and thus are difficult to maintain, and
result in duplication.

Using temporary credentials

It's always better to use short-term or temporary credentials rather than the
long-term credentials (like the IAM user password or programmatic access
with the long-term access key ID and secret access key).
The IAM Roles are first class citizens of the AWS IAM world which use
temporary credentials powered by AWS Security Token Service (STS) and
are commonly used for the service-to-service integration. These temporary
credentials are automatically rotated. The temporary credentials can prove
beneficial in the following scenarios:

Access AWS Resources from EC2: If an application hosted in the EC2
instance needs to access the AWS resources like Amazon S3 buckets, it's
best to use the IAM roles with appropriate permissions along with EC2,
instead of using the hard-coded long term access keys which is a security
risk.
Cross Account Access: The IAM roles enable us to share the access to
the resources in one AWS account (trusting account) with the IAM users
in another account (trusted account). The trusting account simply creates
an IAM policy that grants the trusted account the access to specific
resources. This policy is then associated with a cross account IAM role
that defines the trust relation. The trusted account can then delegate this
access to its own IAM users, who can in turn, assume the cross-account
role to access specific resources allowed by the trusting account.
Identity Federation: For the federated identities (identities defined
outside AWS) who still need to access the AWS resources, the identity
broker authenticates and authorizes them against the identity provider.
The identity broker has permissions to access AWS STS and requests for
temporary credentials. The federated identities can then use these
temporary credentials to log into the AWS account through a temporary
sign-in URL.

Some more IAM best practices
The following are a few more points which can help boost the security of the
IAM users and roles:

Delegation of Permission: Instead of sharing the security credentials
between multiple accounts, it's always a safer option to delegate the
permissions using the cross-account roles. The IAM users in the other
account can then assume the role to perform the actions.

Usage of External ID: While defining the cross-account roles, the best
practice is to specify ExternalId as a policy condition. This ensures that
anyone who wants to assume the role should provide this external
identifier, without which the access is not granted. ExternalId is used to
address the confused deputy problem (introduced in Chapter 2: Identity
and Access Management).
Rotation of Credentials: The rotation of passwords and access keys can
be a good option to limit the usage of compromised credentials. The
custom password policies could be used to warrant the password rotation.
Removal of Unnecessary Credentials: The passwords and access keys
that have not been used recently are good candidates for deletion.
Keeping the unused credentials is a security risk.
Break glass access: As an extension of the principle of least privilege,
companies often follow the "Break Glass" pattern. A break-glass account
or emergency account is created to provide emergency access to the
secure systems and/or sensitive operations. This is sufficed by a break
glass role. This role not only protects the sensitive operations, but it also
results in the notification being sent to the security teams whenever it
gets used. The usage of this role is often restricted within a region for
better safety. In times of emergency, the admins can assume this role
temporarily to perform sensitive operations. In short, this process works
like a break-glass fire alarm system.

Infrastructure security best practices
In this section, we will cover the security best practices pertaining to
networking and working with the compute resources in AWS cloud, which are
as follows:

Utilize VPC based network isolation: AWS VPC allows us to create a
chunk of private cloud within the AWS public cloud. AWS VPC can be
assigned CIDR blocks from the RFC-1918 private address space. The
idea is to limit the usage of the public IPs (Internet accessible), thereby
reducing the surface area of any internet-based attacks. AWS VPC also
supports site-to-site VPN connectivity with the IPSec-based tunneling. In
fact, in scenarios where hybrid connectivity is required, AWS VPN could
be leveraged to encrypt the traffic over the internet. This is true even

when AWS Direct Connect is used to establish high bandwidth
connectivity between AWS and the on-premise data center.
Use network segmentation: Network segmentation and security zoning
with similar security controls can help diminish the blast radius of an
attack by isolating one network from another. We can leverage Amazon
VPC, subnets, route tables, etc., to create such segmentation. Following
the access control features can be used to create isolated network
segments, like security groups, NACLs, host-based firewalls, threat
protection layer, etc.
Bake security elements into IaC process: It is a good practice to create
custom AMIs and container images, harden the operating system, install
the necessary security softwares/agents (like agent-based Intrusion
Prevention System or Intrusion Detection System), and incorporate the
necessary configurations. These golden AMIs or container images can
then be used in the AWS account and referenced from the Infrastructure
as Code (IaC) pipelines, thereby creating repeatable secure
infrastructure. The use of untrusted AMIs, container images, and
softwares are a strict no-no.
Patch VMs/instances regularly: The AWS SSM Patch Manager can
automate the patching process for the managed instances. The AWS SSM
Patch Manager's Patch Baseline service could be helpful in creating the
baselines for approved patches (including security patches) and can scan
the managed instances for the missing patches.
Use SSM Session Manager for SSH access: Unmanaged and/or
misplaced SSH keys are a big security concern. To mitigate this risk, we
can leverage the AWS SSM Session Manager to start a session on any
managed EC2 instance that has the SSM agent installed and get the
access to the instance from a browser-based shell. The commands
executed by the user in the session could be streamed to the Amazon
CloudWatch logs or stored in the Amazon S3 buckets for analysis
purposes. The best part is that all this can be done without opening any
inbound ports (like port 22) on the managed instances. Moreover, there is
no need to use VPN to connect to the instances that reside in the private
subnets.
Plan to safeguard the resources from the DoS/DDoS attacks: The
Denial of Service (DoS) and Distributed Denial of Service (DDoS)
attacks are quite common and such threats need to be taken very

seriously. The AWS Shield can help safeguard our workloads from layer-
3 and layer-4 DDoS attacks. The AWS Shield comes in two flavors –
Standard (free of cost) and Advanced (additional charges apply). The
standard version can provide a basic protection against the most common
network and transport layer DDoS attacks. The advanced version, being a
paid service, opens a 24x7 access to AWS DDoS Response Team (DRT)
and cost protection during an attack. The AWS WAF rules can help
minimize the layer-7 DDoS attacks. In addition to using AWS Shield and
AWS WAF, the following steps could be taken to mitigate such an attack:

Scale to absorb the attack that comes in the form of traffic surges
(use AWS ELB, Auto-scaling, etc.).
Minimize the attack surface area (use private subnets, AWS ELBs,
Route53, etc.).
Create the knowledge around normal traffic patterns.
And finally create a plan of attack to respond better during a
DoS/DDoS onslaught.

Perform vulnerability scanning of networks and hosts: Vulnerability
scanning can provi de insights into the security loop holes in our
networks and hosts. AWS Inspector is a security assessment tool, similar
to a vulnerability scanner. AWS Inspector is agent based and can perform
two types of assessments – host based and network based. It is a
scheduled tool that can be triggered based on the Amazon CloudWatch
events, or manually, on-demand. AWS Inspector has pre-defined
templates like CIS benchmarks, which can go a long way to help us in
hardening our EC2 instances.
Manage firewall rules centrally: The firewall rules can easily get very
complex and messy, thereby opening the chances of misconfiguration and
associated security vulnerabilities. As the best practice, AWS Firewall
Manager could be used to manage the firewall rules centrally across all
the accounts in an AWS Organization to enforce the standard security
rules. Additionally, AWS Firewall Manager can roll out the AWS WAF
rules across the AWS ALB, AWS API Gateway, and Amazon CloudFront
distributions.

Data security best practices

The security of data is very crucial for any enterprise. The following are some
of the best practices that can help secure sensitive data on AWS cloud:

Encrypt always: Encryption is fundamental to the security of the data.
We have covered encryption in Chapter 4: Data Security in AWS. The
data encrypted with strong cryptographic algorithms are more likely to be
better protected. The AWS Key Management Service (KMS) is central
to the AWS cloud's key management and encryption/decryption. The
AWS KMS Customer Master Key (CMK) supports both the symmetric
and the asymmetric encryption, and thus should be leveraged for
encrypting or signing the messages and/or requests wherever required.
Use additional authenticated data: Additional Authenticated Data
(AAD) is a way to achieve authenticated encryption. Encryption context
(explained in Chapter 4: Data Security in AWS) should be used while
performing the KMS encryption/decryption actions.
Rotate keys regularly: Regular rotation of the encryption keys helps
maintain perfect forward secrecy. Both the manual and the automated
rotation (for symmetric keys) is supported. It is best to refer to Customer
Master Keys (CMKs) within the application code with the key aliases
(instead of key IDs). This helps in easy key rotation as the alias can
remain the same, even when the key material is rotated internally.
Classify data: It is important to discover and classify the sensitive data.
This helps us create adequate security controls around such data. Amazon
Macie can help classify the data that is stored in Amazon S3.
Secure data at rest and in transit: Data stored in Amazon S3, Amazon
EBS, Amazon RDS, Amazon DynamoDB, etc., needs to be protected at
rest. For this purpose, these services provide the various Server-Side
Encryption (SSE) options which typically use the AWS managed CMKs
or customer-managed CMKs. The best practice is to leverage the SSE
options while storing the data. To secure the data in flight, all the AWS
service APIs must be called over HTTPS, including the data retrieval
ones.
Take regular data backups: Backups and snapshots can save the day
when there is some failure or disaster pertaining to any storage services
(like Amazon EBS, Amazon RDS, etc.), or an AWS region, and the data
needs to be restored quickly. Often, more elaborate disaster recovery
strategies (like multi-site, warm-standby, etc.) are designed to protect the
data as well as comply with the business continuity guidelines based on

Recovery Time Objective (RTO) and Recovery Point Objective
(RPO). Thus, regular testing of the backup and disaster recovery
processes is crucial.

Application security best practices
Application Security or AppSec involves various tools and processes to find,
fix, and prevent the security vulnerabilities in the applications. The following
are some best practices around application security:

Application AuthN and AuthZ: Each application should have strong
authentication and authorization schemes. Modern applications generally
use federated identities. As such, the applications do not manage the
identities on their own. They just establish a trust relationship with the
web identity providers like Google, Facebook, etc., or the enterprise
identity providers like Microsoft AD or LDAP servers. The federation
can help in creating temporary credentials for all the application users.
The Amazon Cognito identity pools can help federate the identities with
the SAML or OpenID based identity providers. The AWS Directory
Services could be leveraged for the managed Microsoft Active Directory
services or Samba 4 based Simple AD service, or the AD Connector
proxy service to integrate the cloud-based applications with the existing
on-premise AD.
Store application secrets securely: The application secrets (like
database credentials, API keys, and the other application credentials)
must not be a part of the code or configuration files. Ideally, these
sensitive parameters should be stored either in AWS Secrets Manager or
AWS SSM Parameter Store, and looked up and retrieved securely at
runtime. There can be other scenarios where these secrets are pushed into
the runtime environment during deployment using the CI/CD pipelines.
Leverage AWS Web Application Firewall (WAF): Web Application
Firewall or WAF is a layer-7 firewall that provides security to the HTTP
based applications against the common application layer attacks like
XSS, SQL injection, etc., and provides protection against the layer-7
DDoS attacks as well. While there are several WAF products from the
third parties (like Barracuda, Cisco, etc.), AWS WAF seamlessly
integrates with Amazon CloudFront, AWS Application Load Balancer,
and AWS API Gateway.

Communicate over secure protocols: The applications should
communicate over secured protocols (like HTTPS, SFTP, etc.) only.
There are situations where regulatory compliance dictates the end-to-end
security where TLS/SSL traffic is terminated at the applications. On other
occasions, TLS could be terminated at the AWS Application Load
Balancer (ALB) layer. All AWS APIs are serviced over HTTPS and use
the AWS Signature Version 4 signing process.
Static and Dynamic Application Security Testing: SAST (white-box
security testing) and DAST (black-box security testing) are important and
help find the security flaws before these get baked into the final
application release. The AWS Marketplace has several SAST/DAST
offerings by different vendors and AWS partners.
Penetration testing: For applications that operate with sensitive data or
have strict security requirements, it is often considered the best practice
to perform penetration testing to unearth any application vulnerabilities
that could be exploited. Xploits are run against the application to
compromise. Presently, AWS allows penetration testing against its
infrastructure without any prior approval for eight services, including
Amazon EC2, AWS ELB, Amazon RDS, Amazon Aurora, Amazon
CloudFront, and AWS API Gateway.

Logging and monitoring best practices
AWS provides the following best-in-class logging and monitoring services.
The best practice would be to log and monitor everything. Some enterprises
also deploy full-fledged Security Information and Event Management
(SIEM) solutions on AWS that provide real-time analytics of the security
events and help gather actionable security insights. Refer to the following best
practices:

Tag AWS Resources: Appropriate tagging strategy helps organize and
logically group the AWS resources and monitor their usage and behavior.
Capture all Logs: Logs can provide deep insights into the health and
behavior of the networks, servers, applications, databases, etc. Logs are
crucial in detecting failures, errors, and security events, and provide the
basis for metrics and alerts.
The following is a non-exhaustive list of logs that might have to be
configured/captured in AWS – VPC flow logs, AWS CloudTrail logs,

Amazon Route53 DNS query logs, OS logs, application logs, database
logs, Amazon S3 access logs, AWS ALB access logs, etc.
Keep track of infrastructure changes: Keeping track of the changes
made to the infrastructure is vital for obvious reasons and AWS Config
can help with that for all the supported AWS resources (like AWS
CloudTrail, Amazon EC2, Amazon RDS, Amazon Redshift, Amazon S3,
etc.). AWS Config can also help monitor the IAM resources and ensure
they comply with the defined baselines. It is considered the best practice
to use an AWS Config aggregator to aggregate the configuration and
compliance data from multiple accounts and multiple regions or all
accounts in an AWS Organization. The aggregator then presents the
aggregated data in a single dashboard. The pre-defined config rules
generally serve most of the everyday situations. However, if required, the
custom rules could be written using AWS lambda.
Monitor usage of AWS KMS keys: Monitoring the state and usage of
CMKs is significant to understand if these are being used in some
unintended ways. Ideally, we need to establish a baseline for the normal
CMK usage for our environment over time. The Data plane operations
(Encrypt, Decrypt, GenerateDataKey, etc.) and control plane operations
(EnableKey, DisableKey, ScheduleKeyDeletion, etc.) need to be
monitored for establishing standard patterns. AWS KMS is integrated
with AWS CloudTrail that captures all the API calls to AWS KMS as
events. The trails could be configured to send the events to the
CloudWatch Logs for further analysis. Moreover, CMKs can be
monitored using Amazon CloudWatch which collects and processes the
raw AWS KMS data into near real-time, pre-defined metrics.
Leverage AWS Guard Duty: AWS Guard Duty is a regional threat
detection service. The service monitors the AWS CloudTrail events,
AWS VPC Flow Logs, and Amazon Route53 (DNS) logs for malicious
activities and detects threats like trojans, SSH brute force, BitCoin
mining, etc.
Leverage AWS Security Hub: AWS Security Hub provides a
comprehensive regional view of the high-priority security alerts and
compliance status across multiple AWS accounts. AWS Security Hub can
present aggregated findings from AWS GuardDuty, AWS Inspector, AWS
Macie, and AWS Firewall Manager. AWS Security Hub can be integrated
with multiple third-party security solution providers like Twistlock,
AlertLogic, Symantec, Barracuda, etc.

Consolidate AWS CloudTrail logs for AWS Organization: We can
configure AWS CloudTrail to deliver the log files from multiple AWS
accounts into a single Amazon S3 bucket (belonging to a separate, highly
secured AWS account). If we operate as an AWS Organization, we can
create an organization trail that will log all the events for all the accounts
in that organization.
Create custom Amazon CloudWatch metrics and alarms: Amazon
CloudWatch provides a wide range of useful pre-defined metrics. For
example, the pre-defined metrics for Amazon EC2 generally fall into the
three basic types – CPU, Network, and Disk I/O. However, there are
times when the pre-defined metrics are not enough, and we will need to
create the custom metrics and alarms to serve our fine-grained purposes.

Conclusion
A chain is only as strong as its weakest link. Each layer and component in
AWS must be independently secured. Weakness in one layer or one application
can wreak havoc to the entire AWS account. AWS provides services and
security controls for each such layer.
In this chapter, we traversed through all the major layers and discussed some of
the best practices and the AWS services that could be leveraged to make
security more effective. In the end, the enterprises should develop a security
culture and drive it top-down. Every member in an organization should take
responsibility for securing the assets and services of the organization and play
their respective parts.

Index
A
abstract services 254
Access Advisor tool 259
Access Analyzer tool 259
Access Control List (ACLs) 18, 19
Access Level tool 258
access management 26

AWS Organizations 31, 32
delegation 42
evaluation of policies 41
federation 46
IAM policy 26
identity-based policy 34, 35
resource-based policy 36, 37
session policy 41

AD connector 53, 54
additional authenticated data (AAD) 127
Advanced Encryption Standard (AES) 115
Amazon CloudWatch 7, 214

alarms 227
composite alarm 227
Logs 214
metric alarm 227
metric alarm, creating 227-231
metrics 226

Amazon CloudWatch Events 231
notifications, automating 231, 232

Amazon Detective 249
Amazon DynamoDB 136

client-side encryption 137, 138
server-side encryption 136, 137

Amazon EBS 134-136
Amazon Elastic Container Registry (ECR) 106
Amazon EventBridge 233
Amazon GuardDuty 8, 247
Amazon Inspector 7
Amazon Macie 9, 139, 140

sensitive data discovery job 140, 141
Amazon RDS 138

client-side encryption 139
encrypted database connection, establishing 139
server-side encryption 138, 139

Amazon Resource Name (ARN) 19

Amazon S3 130
client-side encryption 133
server-side encryption 130

Amazon S3 ACL 54
canned ACLs 55

Amazon Virtual Private Cloud (VPC) 6
API authorization

Cognito Authorizer 155
IAM Authorizer 145-147
JWT Authorizer 160
Lambda Authorizer 147

API keys 167
Application Load Balancer (ALB) 205-207, 210, 211

WAF rules 205, 206
application security

APIs, securing 144
application security best practices 265, 266
application security, with load balancer 205
arget groups 206
assessment targets 7
Attribute Based Access Control (ABAC) 18, 19
audit artifacts 250
AuthN/AuthZ with Amazon Cognito 172

AWS Amplify 180
granular authorization, with user pool and identity pool 178-180
identity pool 172
user pool 172

Availability Zones (AZs) 205
AWS Account Teams 11
AWS Amplify 180, 181
AWS Artifact 10, 250
AWS cloud

shared responsibility model 2
AWS CloudHSM 129

features 129, 130
AWS CloudTrail 7, 233, 234

trail, configuring 237
trail, creating 235-237

AWS CloudTrail events 234
data events 234
insights events 235
management events 234

AWS Command Line Interface (CLI) 13, 24, 25
AWS Config 7, 243, 244

aggregator 246
configuration items delivery 244, 245
rules 245

AWS Direct Connect 65
AWS Directory Service

for Microsoft AD 53

AWS Enterprise Support 11
AWS Firewall Manager 89

using 90
AWS Global Infrastructure 60, 61

availability zone (AZ) 60
edge networks 60
region 60

AWS IAM access advisor 56, 57
AWS IAM Access Analyzer 57
AWS Identity and Access Management (IAM) 6
AWS Key Management Service (KMS) 9, 119

authenticated encryption, with encryption context 127, 128
customer master keys (CMKs) 119
data keys 125
envelope encryption 125
features 127
key rotation 128, 129
KMS grants 128

AWS Management Console 13, 14
AWS Marketplace 12
AWS Network Firewall 88

components 88, 89
AWS Organizations 31

All features (default) 31
consolidated billing feature 31
Service control policy (SCP) 32, 33

AWS Partner Network (APN) 2, 11
AWS PrivateLink 74, 75
AWS Professional Services 12
AWS Resource Access Manager (RAM) 68
AWS Secrets Manager 10, 190

anatomy of secret 190, 191
secret, accessing 196-198
secret, creating 191, 192
secret, retrieving 192-195
secret, rotating 195, 196
versus AWS SSM Parameter Store 201

AWS security bulletins 12
AWS security documentation 12
AWS Security Finding Format (ASFF) 247
AWS security guidance 10
AWS Security Hub 9, 247, 248
AWS security service 6
AWS security service offerings 6
AWS Security Token Service (STS) 23
AWS Service Catalog 250, 251
AWS Shield 8, 110, 111

advanced tier 8
standard tier 8

AWS Shield Advanced

features 110, 111
AWS Shield Standard 110
AWS Single Sign On (SSO) 54
AWS Software Development Kit (SDK) 13
AWS SSM Parameter Store 198

parameters, creating 198-200
parameters, retrieving 201
parameters, types 198

AWS Systems Manager 10
parameter store 10
patch manager 10
sessions manager 10

AWS tools, for IAM
Access Analyzer 57
access advisor 56, 57
visual editor for policies 55, 56

AWS Trusted Advisor 11
AWS WAF 8
AWS Web Application Firewall (WAF) 96

IP blocking rule, creating 96-100
AWS well-architected tool 13

C
client certificate

generating 166, 167
client-side encryption, Amazon S3

options 133, 134
CloudWatch Logs

exporting to Amazon S3 223-226
log group 215
Logs Insights 217-220
log stream 214
subscriptions, for real-time logged data processing 220-223
unified CloudWatch agent 215-217

Cognito Authorizer
enabling 155-159

Cognito user pool
authentication 173, 174
authorization 174, 175
features 173

Common Vulnerabilities and Exposures (CVEs) 106
components, VPC

Internet gateway 61
NAT device 62
route table 61
subnet 61

Config rules
AWS-managed rules 245
custom rules 246

configuration items delivery, AWS Config
Amazon S3 Bucket 244
SNS topic 244

controls, in shared responsibility mode
fully controlled by customer 5
inherited controls 4, 5
shared controls 5

Cross Origin Requests
controlling 160-163

Cross Origin Resource Sharing (CORS) 160
Cross-Site Scripting (XSS) 8, 170
cryptographic materials providers (CMPs) 137
cryptography 114
customer master keys (CMKs) 119

AWS Managed CMKs 120
AWS Owned CMKs 119, 120
Customer Managed CMKs 120
decryption 121
encryption 121
key material origin 120, 121

D
Data Encryption Standard (DES) 115
data key pairs 125
data keys 125
Data Loss Prevention (DLP) 139
data security

at rest 119
cryptography 114, 115
digital signature 116, 117
digital signature, with message security 118
fundamental concepts 114
in motion 119
key based algorithms 115

data security best practices 264, 265
DDoS attack

application layer attacks 108
protocol attacks 108
volume based attacks 108

DDoS mitigation 109, 110
DDoS Response Team (DRT) 8
decryption 114
delegation, access management

cross account role 42-44
cross account role with third-party accounts 44-46

Digital Rights Management (DRM) 129
Distributed Denial of Service (DDoS) 8, 108
DNS Firewall 85-87

E
egress-only Internet gateways 78
elastic IP address (EIP) 76
Elastic Load Balancer (ELB) 8, 110
elastic load balancing

and TLS 206
elastic network interface (ENI) 72
encryption 114
end-to-end TLS 210
envelope encryption

with data key 126, 127
working 125

F
federation 46

AWS Directory Service 53
AWS Single Sign On (SSO) 54
SAML2.0 based federation 46-48
Web Identity Federation 49-51
Web Identity Federation with Cognito 52, 53

firewalls 78
AWS Network Firewall 88, 89
DNS Firewall 85-87
Network Access Control Lists (NACLs) 81-85
security groups 78-81

G
gateway endpoints

creating 71, 72
limitations 70

global threat dashboard 111, 112

H
hardware security modules (HSM) 9, 129
health checks 206
hybrid networks

AWS Direct Connect 65
VPN connectivity 62

I
IAM Authorizer 145

associating with API method 146, 147
IAM best practices

account root user, safeguarding 255, 256

AWS managed and custom policies, using 260, 261
break glass access 262
Credentials, rotating 262
delegation of permission 262
external ID, using 262
IAM users/groups, creating 257
IAM users/groups, managing 257
least privilege principle, following 258-260
temporary credentials, using 261, 262
Unnecessary Credentials, removing 262

IAM role
permissions policy 23
trust policy 23

IAM user 19
AWS account root user 19, 20
password policy 22
user creation and credential management 20, 21

Identity and Access Management (IAM)
elements 18
fundamentals 18
IAM group 22, 23
IAM role 23
IAM user 19
identities 19

identity-based policy 34, 35
permission boundaries 35, 36

identity pool 176
authentication 176, 177
authorization 177, 178

Infrastructure-as-a-Service (IaaS) 3
infrastructure security best practices 262-264
infrastructure services 254
inherited controls

examples 4, 5
interface endpoints 72, 74

limitations 72
security, improving 73

inter VPC private communication 66, 68
VPC peering 66-68

IP filtering 95
AWS WAF Rule based, on IP set 96-100
blacklisting, with NACL 102
blacklisting, with resource policy 100, 101
whitelisting, with security groups 102

J
JSON Web Key Set (JWKS) 149
JWT Authorizer 160

K
key based algorithms

asymmetric algorithms 115
symmetric algorithms 115

Key Management Service (KMS) 114
keyspace 114
KMS grants 128

L
Lambda Authorizer 147

Request Authorizer 148
Token Authorizer 147
working with 148-154

listeners 206
logging and monitoring best

practices 267, 268
log management, by AWS

Amazon S3 server logs 243
CloudFront Access logs 242
CloudTrail logs 242
Load Balancer Access logs 242
Real-time logs 242
Route 53 Query logs 242
VPC Flow logs 242

M
multi-factor authentication (MFA) 148
mutual TLS (MTLS) 163-166
N
NAT gateways 76
NAT instance 77
Network Access Control Lists

(NACLs) 6, 82-85
characteristics 81, 82

Network Address Translation
(NAT) device 75, 76

Network Load Balancer (NLB) 205-209
configuring 211

network security, with VPC 61
hybrid networks 62

Node Package Manage (NPM) 149
O
OpenID Connect (OIDC) 160
Open Systems Interconnection (OSI) 8
Open Web Application Security

Project (OWASP) 8
Organizational Units (OU) 31
P
patch management 91-94

Payment Card Industry (PCI) 10, 250
permission boundary 35, 36
personally identifiable information (PII) 9
points of presence (PoP) 6
policies, evaluating

identity based policies and
permission boundary 42

identity based policies and
resource-based policies 41, 42

identity based policies and
service control policies 42

portfolio 251
private APIs 171, 172
private communication, with AWS services 69, 70

AWS PrivateLink 74, 75
gateway endpoints 70-72
interface endpoints 72-74

Q
quota limit

defining, with usage plan 167

R
Remote Desktop Protocol (RDP) 94

session management 94, 95
resource-based policy 36, 37

S3 bucket policy 38, 39
trust policy 39, 40, 41
versus IAM role 41

restricted algorithms 114
Role Based Access Control (RBAC) 18, 19
rules package 103

S
S3 bucket policy 38, 39
SAML2.0 based federation 46-48

AssumeRoleWithSAML 48
Secure Shell (SSH) 95

session management 94, 95
Secure Socket Layer (SSL) 130
Security Assertion Markup Language (SAML) 147
security groups 3

characteristics 78, 79
security of APIs 144

API authorization 144
client certificate 166
Cross Origin requests, controlling 160-162

mutual TLS 163
private APIs 171, 172
usage plan 167
WAF used 170

server-side encryption (SSE), Amazon S3
SSE-C option 132, 133
SSE-KMS option 131, 132
SSE-S3 option 130, 131

Service control policy (SCP) 32
Service Organization Control (SOC) 10, 250
Session Manager 94
session policy 41
shared controls

examples 5
shared responsibility model 2, 254

AWS responsibility 2, 3
controls 4
customer responsibility 3, 4

Simple AD 54
single page application (SPA) 182
software defined networking (SDN) 61
software-defined network (SDN) 6
SSL offloading 207
symmetric CMK

creating 122, 123, 124
customer key store (CloudHSM) 121
external 121
KMS 121

T
targets 206
throttling limits

defining, with usage plan 167
TLS termination 207

enabling, on ALB 208
traffic mirroring 90

considerations 90
trail 235
trail configuration

advanced event selectors 239, 240
encryption support for log files 237, 238
event selectors 239
log file integrity 238
notification for log file delivery 239
trail, monitoring 241

transit gateway 68, 69
Transport Layer Security (TLS) 130, 206

U
usage plan 167

creating, with API Gateway 168-170
using 167

V
Virtual Private Cloud (VPC)

components 61
networks, securing with 61

visual editor, for IAM policies 55, 56
VPC based AWS CLI commands 65, 66
VPC endpoint (VPCE) 171
VPC Flow Logs 6
VPC peering connection 66

consideration 67
VPN connectivity

AWS Client VPN 63, 64
AWS Site-to-Site VPN 62, 63
AWS VPN CloudHub 64
VPN appliance 64

Vulnerability Assessment 102
Amazon Inspector 103-105
ECR image scans 106-108

W
WAF based VPC 205
WAF rules, for Application Load Balancer 205, 206
WAF sandwich pattern 205
Web ACL Capacity Unit (WCU) 202
Web ACLs (Access Control List) 202

creating 202-205
Web Application Firewall (WAF) 202
web applications security, on Amazon S3 and CloudFront 182

additional security headers, configuring 186-188
geo-restrictions, configuring 189
S3 access, securing with Origin Access Identity 182-186
S3 website access, securing with Referrer Header 186

Web Identity Federation 49-51
AssumeRoleWithWebIdentity 52
with Cognito 52, 53

	Cover Page
	Title Page
	Copyright Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	1. Introduction to Security in AWS
	Introduction
	Structure
	Objectives
	Shared responsibility model
	Security of the cloud – AWS responsibility
	Security in the cloud – customer responsibility
	Controls in shared responsibility model
	Inherited controls
	Shared controls
	Fully controlled by the customer

	Important AWS security service offerings
	AWS Identity and Access Management (IAM)
	Amazon Virtual Private Cloud (VPC)
	VPC Flow Logs
	Amazon CloudWatch
	AWS CloudTrail
	AWS Config
	Amazon Inspector
	Amazon GuardDuty
	AWS Shield
	AWS WAF
	Amazon Macie
	AWS Security Hub
	AWS Key Management Service (KMS)
	AWS Secrets Manager
	AWS Systems Manager
	AWS Artifact

	Security guidance
	AWS Trusted Advisor
	AWS Account Teams
	AWS Enterprise Support
	AWS Partner Network
	AWS Professional Services
	AWS Marketplace
	AWS Security Bulletins
	AWS Security Documentation
	AWS Well-Architected Framework
	AWS Well-architected Tool

	Quick Note on AWS Management Console
	Conclusion

	2. Identity and Access Management
	Introduction
	Structure
	Objectives
	Fundamentals of IAM
	Identity
	IAM user
	AWS account root user
	User creation and credential management
	Password policy

	IAM group
	IAM role
	A quick introduction to AWS-CLI

	Access Management
	IAM Policy
	Structure of a policy
	IAM policy examples

	AWS Organizations
	Service control policy

	Identity-based policy
	Permission boundaries

	Resource-based policy
	S3 Bucket Policy
	Trust policy
	Resource based policy versus IAM role

	Session policy
	Evaluation of policies
	Identity based policies and resource-based policies
	Identity based policies and permission boundary
	Identity based policies and service control policies (SCP)

	Delegation
	Cross account role
	Cross account role with third-party accounts

	Federation
	SAML2.0 based federation
	Web Identity Federation
	Web Identity Federation with Cognito
	AWS Directory Service
	AWS Single Sign On (SSO)

	Amazon S3 ACL
	Amazon S3 Canned ACLs

	AWS tools for IAM
	Visual editor for policies
	Access advisor
	Access analyzer

	Conclusion

	3. Infrastructure Security
	Introduction
	Structure
	Objectives
	AWS Global Infrastructure
	Securing networks with Virtual Private Cloud
	Hybrid networks
	VPN connectivity
	AWS Direct Connect

	A quick note on VPC based AWS CLI commands
	Inter VPC private communication
	VPC peering
	Transit gateway

	Private communication with AWS services
	Gateway endpoints
	Interface endpoints
	A note on AWS PrivateLink

	NAT devices and egress-only Internet gateways
	NAT gateways
	NAT instance
	Egress-only Internet gateways

	Firewalls
	Security groups
	Network Access Control Lists
	DNS Firewall
	AWS Network Firewall
	A note on AWS Firewall Manager

	Traffic mirroring

	Patch management
	Secure SSH and RDP session management
	IP filtering
	AWS WAF Rule based on IP set
	Blacklisting with resource policy
	Blacklisting with NACL
	Whitelisting with security groups

	Vulnerability assessment
	Amazon Inspector
	ECR image scans

	Distributed Denial of Service and AWS Shield
	A note on Distributed Denial of Service
	DDoS Mitigation
	AWS Shield
	AWS Shield Standard
	AWS Shield Advanced
	Global threat dashboard

	Conclusion

	4. Data Security
	Introduction
	Structure
	Objectives
	Fundamental concepts of securing data
	Fundamentals of cryptography
	Symmetric and asymmetric algorithms
	Digital signature and message security
	Security of data in motion and at rest

	AWS Key Management Service (KMS)
	Customer Master Key (CMK)
	Key material origin
	Encryption and decryption with CMK

	Data key and data key pairs
	Envelope encryption
	Encryption and decryption with data key

	More KMS features
	Authenticated encryption with encryption context
	KMS grant
	Key rotation

	AWS CloudHSM
	Amazon S3
	Server-side encryption
	Client-side encryption

	Amazon EBS
	Amazon DynamoDB
	Server-side encryption
	Client-side encryption

	Amazon RDS
	Server-side encryption
	Client-side encryption
	Establishing encrypted database connection

	Amazon Macie for data loss prevention
	Sensitive data discovery job

	Conclusion

	5. Application Security
	Introduction
	Structure
	Objectives
	Securing APIs
	API authorization
	IAM Authorizer
	Lambda Authorizer
	Cognito Authorizer
	JWT Authorizer

	Controlling Cross Origin Requests
	Mutual TLS and client certificates
	Mutual TLS
	Client certificate

	Usage plan, API keys, throttling, and quota
	Protecting APIs with WAF
	Private APIs

	AuthN/AuthZ with Amazon Cognito
	User Pool
	Authentication
	Authorization

	Identity Pool
	Authentication
	Authorization

	Granular authorization with user pool and identity pool
	A quick introduction to AWS Amplify

	Securing web applications hosted on Amazon S3 and CloudFront
	Securing S3 access with Origin Access Identity
	Securing S3 Website access with Referrer Header
	Configure additional Security Headers
	Configure Geo Restrictions

	Externalizing the secrets and configuration parameters
	AWS Secrets Manager
	Anatomy of a Secret
	Creation and Retrieval of Secrets
	Rotation of Secrets
	Access Control for Secrets

	AWS Systems Manager Parameter Store
	Creation and retrieval of parameters

	Comparison: AWS Secrets Manager v/s AWS SSM Parameter Store

	Web Application Firewall
	Securing applications with load balancer
	WAF rules for Application Load Balancer
	Elastic Load Balancing and TLS
	TLS termination
	End-to-end TLS

	Conclusion

	6. Logging, Monitoring, and Auditing
	Introduction
	Structure
	Objectives
	Amazon CloudWatch
	CloudWatch Logs
	Unified CloudWatch agent
	Logs Insights
	Subscriptions for real-time processing of logged data
	Export logs to Amazon S3

	CloudWatch metrics and alarms
	CloudWatch events
	Amazon EventBridge

	AWS CloudTrail
	AWS CloudTrail Events
	Creation of a Trail
	Trail configuration
	Encryption support for log files
	Log file integrity
	Notification for log file delivery
	Event selectors and advanced event selectors
	Monitoring a trail

	Important logs managed by AWS
	AWS config
	Delivery of configuration items
	Config rules
	Aggregator

	Amazon GuardDuty
	AWS Security Hub
	Amazon Detective
	AWS Artifact
	AWS Service Catalog
	Conclusion

	7. Security Best Practices
	Introduction
	Structure
	Objectives
	Shared responsibility model
	IAM best practices
	Safeguarding the account root user
	Creating and managing IAM users/groups
	Following the principle of least privilege
	Using AWS managed and custom policies
	Using temporary credentials
	Some more IAM best practices

	Infrastructure security best practices
	Data security best practices
	Application security best practices
	Logging and monitoring best practices
	Conclusion

	Index

